

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

v

Contents at a Glance

About the Authors ��� xvii

About the Technical Reviewer ��� xix

Acknowledgments ��� xxi

Introduction ��� xxiii

Chapter 1: Arduino 1�0�4 Core Changes ■ ���1

Chapter 2: Arduino Development and Social Coding ■ ���15

Chapter 3: openFrameworks and Arduino ■ ���47

Chapter 4: Android ADK ■ ���63

Chapter 5: XBees ■ ���91

Chapter 6: Simulating Sensors ■ ��111

Chapter 7: PID Controllers ■ ���129

Chapter 8: Android Sensor Networks ■ ��143

Chapter 9: Using Arduino with PIC32 and ATtiny Atmel Chips ■ ��������������������������������������169

Chapter 10: Multiprocessing: Linking the Arduino for More Power ■ ������������������������������189

Chapter 11: Game Development with Arduino ■ ���209

Chapter 12: Writing Your Own Arduino Libraries ■ ���237

Chapter 13: Arduino Test Suite ■ ��259

Index ���283

xxiii

Introduction

Since its release, Arduino has become more than just a development platform; it has become a culture built around
the idea of open source and open hardware, and one that is reimagining computer science and education. Arduino has
opened hardware development by making the starting skills easy to obtain, but retaining the complexities of real-world
application. This combination makes Arduino a perfect environment for school students, seasoned developers, and
designers. This is the first Arduino book to hold the title of “Pro,” and demonstrates skills and concepts that are used by
developers in a more advanced setting. Going beyond projects, this book provides examples that demonstrate concepts
that can be easily integrated into many different projects and provide inspiration for future ones. The focus of this book
is as a transition from the intermediate to the professional.

1

Chapter 1

Arduino 1.0.4 Core Changes

If you are writing sketches, creating your own libraries, or making your own Arduino-compatible boards, the
Arduino 1.0.4 changes will affect you. Many of the changes optimize the Arduino IDE for improved workflow and
customization. Changes to the IDE include the removal of unused buttons, and the placement of the Compile and
Upload buttons next to each other. The Arduino IDE is now multilingual; you can pick a custom language for the
editor. These changes are only the visible portions—with these updates, the Arduino team took the opportunity to
make significant and code-breaking changes in order to deliver a more consistent and complete Arduino API.
The core libraries of the Arduino Core API have been overhauled as well. Additional improvements include better
support for making your own Arduino variations and the ability to integrate programmable USB devices with Arduino.
This chapter will go through these changes, what they mean, and how they will affect your code.

The changes break down into the following categories:

Arduino IDE•	

Sketches•	

API Core•	

Core libraries•	

Variant support for Arduino-derived boards•	

Changes to the Arduino IDE
The original file extension for Arduino was .pde. This is the Processing application file extension. If you had both
programs installed, Arduino files would be opened in the Processing program. Now, after the updates, Arduino
sketches have their own extension: .ino. Therefore, mysketch.pde is now named mysketch.ino. Double-click the file
name, and Arduino launches. You can change the preferences to support the older PDE extension, but by default,
PDE files simply open. Files will not be renamed to .ino unless you change the setting in the preferences.

The Arduino IDE editor now has line numbers in the lower-left corner, as shown in Figure 1-1. Compile is the
first button, and the second button is Upload. The lower-right corner shows the selected board and what port it is
connected to. These changes make it possible to quickly debug simple errors by identifying the line of code, verifying
the correct serial port, and establishing whether the board is connected.

Chapter 1 ■ arduino 1.0.4 Core Changes

2

Look now at the Preferences panel (File ➤ Preferences), shown in Figure 1-2. I always use verbose output when
I’m looking for errors in the compile process. The verbose-output feature has been moved to the Preferences panel,
whereas before it could be triggered by pressing Shift plus the Compile button. The Preferences panel now
enables you to resize the compile output for easier reading.

Figure 1-1. Updated main window for the Arduino 1.0.x environment

Figure 1-2. Updated Preferences panel for the Arduino 1.0.x environment

Chapter 1 ■ arduino 1.0.4 Core Changes

3

The location of the preferences.txt file is listed in the Preferences dialog box. It is good to know this because
you may need to edit this file.

Changes to Sketches
Whenever you write an Arduino sketch, you are using the core functions and collection of objects that are always
accessible, without needing to include external libraries in your sketch. For instance, Serial can be used without
having to declare it. The Arduino IDE preprocesses the Arduino sketch before compiling. This process includes the
Arduino.h file from core. Some of the files from core have to be included manually, as the Ethernet core does.
The Ethernet core features are needed for the Arduino Ethernet board, but because not all Arduino boards have
Ethernet, the files are available but not automatically included.

Arduino achieves its simplicity by preprocessing the sketch and automatically generating a basic functional set.
So, you never have to worry about including Arduino.h and creating header files for sketches, unless you create your
own Arduino libraries. Arduino libraries have to be written in standard C/C++; I will cover their creation later,
in Chapter 14.

Here, you will examine how the default core functionality has changed. Then the chapter will cover how these
changes have affected the default libraries that come with Arduino.

These default libraries have been replaced by new variants with new features. Also, WProgram.h has been change
to Arduino.h.

API Updates
This section will discuss the changes to the API.

pinMode
pinMode has been updated to support INPUT_PULLUP. This adds clean support for creating buttons and switches that
are active high by default, and when activated pulled low. Listing 1-1 shows an example.

Listing 1-1. pinMode INPUT_PULLUP Resistor Feature

setup()
{
 Serial.begin(9600);
 pinMode(10, INPUT);
 digitalWrite(10, HIGH);
 int val = digitalRead(10);
 Serial.print(val);
}

In Arduino 1.0.x you can do it this way:
setup()
{
 Serial.begin(9600);
 pinMode(10, INPUT_PULLUP);
 int val = digitalRead(10);
 Serial.print(val);
}

Chapter 1 ■ arduino 1.0.4 Core Changes

4

This approach has the benefit of making the pinMode set the default value as needed. Also, using the internal
pull-up resistors removes the need to use external pull-up resistors, allowing you to remove parts from your project.

Return Types
Return types have been updated to return the size of data using size_t, which is an unsigned integer that is platform
dependent. size_t is included from stdio.h in the Print.h header. This returns a size type for the data printed.
You can use this to check the quantity of data returned for iterating. When writing your own libraries that print custom
data, you would use size_t as the return value.

uint_8
Several functions now take and return uint_8, which is a universal 8-bit integer that allows for cross-platform
compatibility.

Arduino API Core 1.0.4
Now let’s look at the changes in the Arduino API Core.

Arduino.h
If you are using standard AVR GCC system libraries or writing your own library, it’s important to know the Arduino
library. Arduino.h now includes all the values from wiring.h. If you are already programming with C/C++, it’s good to
know which functions are already available, so that you don’t include the libraries twice.

Arduino.h includes the libraries shown in Listing 1-2, so you don’t need to include them in your own sketches.

Listing 1-2. New Headers Automatically Included in Arduino.h

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <avr/pgmspace.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "binary.h"
#include "WCharacter.h"
#include "WString.h"
#include "HardwareSerial.h"
#include "pins_arduino.h"

You never have to duplicate the libraries in your own sketches. They are automatically included for your use.
The preprocessing compiles Arduino.h, and then combines the sketch with a file called main.cpp. This file

contains the implementation for void setup() and void loop(). In fact, it’s short enough to show in Listing 1-3.

Chapter 1 ■ arduino 1.0.4 Core Changes

5

Listing 1-3. The New Version of main.cpp

#include <Arduino.h>
int main(void)
{
 init();
#if defined(USBCON)
 USBDevice.attach();
#endif
 setup();
 for (;;) {
 loop();
 if (serialEventRun) serialEventRun();
 }

 return 0;
}

Looking at the source, there are two interesting items to note. First, main.cpp now looks to see if a USB
connection is defined and attached. Second, the void loop() code runs, and then a serial event is checked for.
If the event is found, then the code runs it.

Updated Serial Object
Sending data from serial is now asynchronous. The serial object depends on a parent object called stream, so it is
included automatically with HardwareSerial.h in your main sketch.

Updated Stream Class
The Stream class has been updated. This is part of the serial object and provides the search, find, and parse value
functions that the HardwareSerial object uses.

Constructor
The constructor simply sets the timeout for the serial port to a default of 1000 ms.

Stream() {_timeout=1000;}

Member Functions
The member functions are shown in Table 1-1.

Chapter 1 ■ arduino 1.0.4 Core Changes

6

Print
The Print class has been updated. This affects the Client and Stream classes directly. The classes that include
them are affected as well. The HardwareSerial and UDP classes use Stream. Therefore, you do not specifically have
to include Print in your main Arduino sketch. Table 1-2 shows some of the more important updates to the public
methods.

Table 1-1. Stream Member Functions

Function Description

void setTimeout(unsigned long timeout); Sets the timeout value for stream functions. If the process takes too
long, it returns. The default is configured for 1000 ms, which is
1 second. The constructor sets this value.

bool find(char *target); Searches the stream for the target string. Returns true if found,
otherwise false. Also, will return as false if a timeout occurs.

bool find(char *target, size_t length); Reads the stream until a target string of a specific length is found.

bool findUntil(char *target, char
*terminator);

Works according to the same logic as find(), but returns true when
a terminator string is found.

bool findUntil(char *target, size_t
targetLen, char *terminate, size_t
termLen);

Within a particular buffer and length, returns true if a termination
string is found or the length reached.

long parseInt(); Searches for the first valid (long) integer from the current position.
Initial characters that are not digits (0 through 9) or the minus sign
are skipped; once a non-digit is found, the value is returned.

float parseFloat(); Searches for the first valid float from the current position, ignoring
characters that are not digits or the minus sign. Once a non-digit is
found that is not a period (.), the value is returned.

size_t readBytes(char *buffer, size_t
length);

Reads characters from the stream into the buffer. If a length or
timeout is reached, the function returns either 0 (for no data found)
or the number of characters in the buffer.

size_t readBytesUntil(char terminator,
char *buffer, size_t length);

Reads characters from the stream into the buffer. If a terminator
character, length, or timeout is reached, the function returns 0
(for no data found) or the number of characters in the buffer.

long parseInt(char skipChar); Allows for the parsing of integers and for a character (e.g., a comma)
to be skipped.

float parseFloat(char skipChar); Works similarly to parseFloat(), but ignores the skip character.

Chapter 1 ■ arduino 1.0.4 Core Changes

7

Table 1-2. Updated Print Public Methods

Method Description

size_t write(const char *str) { return
write((const uint8_t *)str, strlen(str)); }

Prints the character string at the pointer location. This
function automatically finds the length of the character
string. It returns number of characters printed.

virtual size_t write(const uint8_t *buffer,
size_t size);

Writes a constant unit8_t pointer to a buffer of size size_t.
Prints the bytes of a certain length, and returns the number
of characters printed.

size_t print(const __FlashStringHelper *); Prints a constant string stored in flash. Returns the number
of character printed.

size_t print(const String &); Prints a constant string object passed as reference. Returns
the number of characters printed.

size_t print(const char[]); Prints a constant character array. Returns the number of
characters printed.

size_t print(char); Prints a character. Returns the number of characters printed.

size_t print(unsigned char, int = DEC); Prints an unsigned character in decimal format. Returns the
number of characters printed.

size_t print(int, int = DEC); Prints an integer with the default decimal format. Returns
the number of characters printed.

size_t print(unsigned int, int = DEC); Prints an unsigned integer with the default decimal format.
Returns the number of characters printed.

size_t print(long, int = DEC); Prints a long with the default decimal format. Returns the
number of characters printed.

size_t print(unsigned long, int = DEC); Prints an unsigned long with the default decimal format.
Returns the number of characters printed.

size_t print(double, int = 2); Prints a double with two decimal places. Returns the
number of characters printed.

size_t print(const Printable&); Prints a printable object passed as reference. Returns the
number of characters printed.

size_t println(const __FlashStringHelper *); Prints a constant string held in flash with a newline
character. Returns the number of characters printed.

size_t println(const String &s); Prints a const String passed as reference with a newline
character. Returns the number of characters printed.

size_t println(const char[]); Prints a constant character array with a newline character.
Returns the number of characters printed.

size_t println(char); Prints a char with a newline. Returns the number of
characters printed.

size_t println(unsigned char, int = DEC); Print an unsigned char with the default decimal format with
newline. Returns the number of characters printed.

size_t println(int, int = DEC); Prints an integer with a newline with the default decimal
format. Returns the number of characters printed.

(continued)

Chapter 1 ■ arduino 1.0.4 Core Changes

8

New Printable Class
A new Printable class was created to define how new objects would be printed. Listing 1-4 shows an example.

Listing 1-4. Example of Writing Bytes

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 byte bb = B101101;
 int bytesSent = Serial.print("byte: println: ");
 Serial.print(bytesSent);
 Serial.print(" : ");
 Serial.print(bb);
 Serial.print(" write: ");
 Serial.write(bb);
 Serial.print("");
 Serial.write(45); // send a byte with the value 45
 Serial.println("");
 bytesSent = Serial.write("A");
}

Updated String Library
Storing strings into flash for printing has been made easier by the F() command. Whatever string is placed between
quotation marks will be stored in flash, and will reduce the amount of RAM used.

Serial.println(F("store in Flash"));

Table 1-2. (continued)

Method Description

size_t println(unsigned int, int = DEC); Prints an unsigned integer with the default decimal format
with a newline. Returns the number of characters printed.

size_t println(long, int = DEC); Prints a long as a decimal with a new line. Returns the
number of characters printed.

size_t println(unsigned long, int = DEC); Prints an unsigned long as a decimal with a new line.
Returns the number of characters printed.

size_t println(double, int = 2); Prints a double with two decimal places with a newline.
Returns the number of characters printed.

size_t println(const Printable&); Given a printable object, prints it with a newline. Returns
the number of characters printed.

size_t println(void); Prints a new line character. Returns the number of
characters printed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 1 ■ arduino 1.0.4 Core Changes

9

Wire Library Updates
The Wire library also uses Stream, so it has the same features as Serial. The function Wire.send() has been replaced
by Wire.write(). Wire.receive() has changed to Wire.read().

HardwareSerial Updates
HardwareSerial now supports USB by default.

•	 Serial.begin() supports unsigned long declaration.

•	 Serial.write() now returns size_t.

•	 Serial.SerialEvent() has changed.

•	 Serial.SerialEventRun() is implemented to check for up to four defined serial ports
(Serial, Serial1, Serial2, and Serial3) and look for available serial data on each.

Physical Board Updates and USB Compatibility
All the new Arduino boards come with 16u2 chips for USB or have USB support built in, as is the case with the
Arduino Leonardo 32u4. The core now includes USB serial, keyboard, and joystick. The Arduino Leonardo has the
advantage that the USB libraries are accessible in your Arduino sketch, and you can use the new USB libraries to
program Arduino Leonardo behaviors. However, the 16u2 chips do not use the same library, and since they are
separate chips, they have to be programmed separately. Currently, the most widely developed USB support libraries
are from Paul Stoffregen for the Teensy and Teensy++ boards.

Avrdude Update
Avrdude is the uploader that Arduino uses to load program images onto the Arduino boards. The version of Avrdude
that comes with Arduino has been updated to 5.11, which supports the arduino upload type. This used to be the
stk500 upload type. All the official boards are now programmable by this arduino upload type from the 5.11 version.
Additionally, custom bootloaders and firmware can be loaded onto Arduino using Avrdude.

You can use this feature to program microcontrollers with the Arduino bootloader, so that they can run Arduino
sketches. Programmable microcontrollers include ATtiny85, ATtiny45, chipKIT Uno32, chipKIT Fubarino SD, and
user-created and designed Arduino-compatible microcontrollers.

The New Arduino Leonardo Board
Arduino revision 3 boards are already configured and updated. The variant types are defined, and the upload types
are configured for “Arduino.”

The Arduino Leonardo is based on the Atmel ATmega32u4 chip. The Leonardo board has the following features:

MCU ATmega32u4•	

Operating voltage: 5V•	

Recommended input voltage range: 7–12V•	

Twenty digital pins•	

Seven pulse-width modulation (PWM) pins•	

Chapter 1 ■ arduino 1.0.4 Core Changes

10

Twelve analog input channels•	

Flash memory: 32 KB (but 4 KB is used for the bootloader)•	

SRAM: 2.5 KB•	

EEPROM: 1 KB•	

Clock speed: 16 MHz•	

A unique feature of the Leonardo is that serial data is normally handled and programmed over USB, but
the Leonardo also has pins 0 and 1, which are configured as additional serial pins. These can be used for serial
communication, in addition to USB. For instance, you can program and communicate using serial over USB, while a
device like a GPS shield can use the onboard serial pins as hardware serial, without the need to use SoftwareSerial.
Avoid the conflict generated between SoftwareSerial and the Servo library when they are used at the same time.

The firmware updates allow for the programming of the devices over USB serial. They implement an improved
reset feature that allows for a software reset, triggered by the Arduino uploader at programming time. If the Arduino is
emulating a keyboard, joystick, or mouse, you need to be able to reset the device so you can reprogram it.

In the new system SPI, however, pins are not broken out into digital pins, and are only available in the 6-pin ICSP
header. For example, the Adafruit 32u4 breakout board and the Pro Mini from SparkFun Electronics both use the
ATmega32u4 chip, and can be configured to act like an Arduino Leonardo. However, the physical pin mappings might
be different, and this is where using a variants file is really helpful.

There are also two sets of I2C pins, but they are connected to the same pins on the ATMEga32u4 chip. They do
not have internal pull-up resistors. You will have to confirm whether your shield has onboard pull-up resistors, and
if not, you will have to add them. For instance, the Adafruit RFID shield will require that external pull-up resistors be
added to the board.

Figure 1-3 is a chart stowing how the pins of the ATmega32u4 chip are mapped to the pins on the Arduino
Leonardo.

Figure 1-3. ATmega32u4 pin numbering

Chapter 1 ■ arduino 1.0.4 Core Changes

11

In order to add the Leonard board to the Arduino IDE, they needed to define the boards.txt file, which contains
the complete definition of the board. The boards.txt file includes the board name, platform, and upload protocol.
Most importantly, the boards.txt file indicates the location of the bootloader file and the variants file to be used.
If you make your own board based on this chip, these are the critical files to update. The SparkFun Pro Mini, the
Adafruit ATmega32u4 board, and the paper Leonardo are all defined similarly; however, the Leonardo header and the
name field need to be changed in the boards.txt file to match each board (see Listing 1-5). If there were a different pin
configuration on your custom board, you would need to create your own build.variant file.

Listing 1-5. boards.txt Definition for the Arduino Leonardo

leonardo.name=Arduino Leonardo
leonardo.platform=avr
leonardo.upload.protocol=arduino
leonardo.upload.maximum_size=28672
leonardo.upload.speed=1200
leonardo.bootloader.low_fuses=0xde
leonardo.bootloader.high_fuses=0xd8
leonardo.bootloader.extended_fuses=0xcb
leonardo.bootloader.path=diskloader
leonardo.bootloader.file=DiskLoader-Leonardo.hex
leonardo.bootloader.unlock_bits=0x3F
leonardo.bootloader.lock_bits=0x2F
leonardo.build.mcu=atmega32u4
leonardo.build.f_cpu=16000000L
leonardo.build.core=arduino
leonardo.build.variant=leonardo

Board Variants
Board variants allow the defining of custom pin mappings for new and custom boards. Originally, all of these features
were maintained in a pins_arduino.h file in the core. Now the pin maps have been moved into their own folder,
called variants.

Figure 1-4. Arduino Leonardo pin and feature layout

Chapter 1 ■ arduino 1.0.4 Core Changes

12

Variants Files
The Arduino Leonardo is a good example. The Teensy from Paul Stoffregen and the ATmega32u4 breakout board
from Adafruit both contain the same chip as the Leonardo, but have different form factors. The number of pins and
locations don’t match, so creating a board variants file helps map the pins to the common locations more easily. Like
pin 13 used for blink. Pin 7 maps to an LED on the ATmega32u4 breakout board. Adding a variant file causes those
mappings to be the same. The variants file makes it much easier to create a custom board that is Arduino compatible.

These variants files are placed into a folder named after the board or the pin layout. Then, inside boards.txt,
the variants entry needs to be added to:

boardname.build.variant=myboardpins

The files can be placed either into the application hardware/arduino/variants folder or in sketches/hardware/
myat32u4/variants.

Arduino comes with several predefined variants that support the existing Arduino boards, but this chapter will
examine the section specific to the Leonardo variants. Among the other variant folders (mega, micro, standard), there
is a new one called Leonardo. That folder contains pins_arduino.h. This is used at compile time as a reference for the
pin mappings and board-specific features.

Variant Types and Naming
The Arduino Leonardo has 12 analog inputs, but only 5 are mapped on the silk screen. However, all 12 are defined
in the variants file. This means you can use the features—even though they are not labeled—by reading the variants.
The SPI pins are not labeled, but can be accessed via the ICSP header. Here is the section where these capabilities are
defined:

I2C is defined as pins 2 and 3 on the ATmega32u4 chip, as shown in Listing 1-6.

Listing 1-6. Variant File i2C Mappings

static const uint8_t SDA = 2;
static const uint8_t SCL = 3;

SPI is defined as pins 17, 16, 14, and 15 on the ICSP header, as shown in Listing 1-7.

Listing 1-7. SPI Pin Mappings

// Map SPI port to 'new' pins D14..D17
static const uint8_t SS = 17;
static const uint8_t MOSI = 16;
static const uint8_t MISO = 14;
static const uint8_t SCK = 15;

The analog pins are defined and mapped on the ATmega32u4 to the pins shown in Listing 1-8.

Listing 1-8. Analog Pin Mappings

// Mapping of analog pins as digital I/O
// A6-A11 share with digital pins
static const uint8_t A0 = 18;
static const uint8_t A1 = 19;
static const uint8_t A2 = 20;
static const uint8_t A3 = 21;

Chapter 1 ■ arduino 1.0.4 Core Changes

13

static const uint8_t A4 = 22;
static const uint8_t A5 = 23;
static const uint8_t A6 = 24; // D4
static const uint8_t A7 = 25; // D6
static const uint8_t A8 = 26; // D8
static const uint8_t A9 = 27; // D9
static const uint8_t A10 = 28; // D10
static const uint8_t A11 = 29; // D12

The rest of the file configures the ports and other features to support these constants.

Uploader Options Renamed to Programmers
There are several programmers supported in the list. The supported programmers are

AVR ISP•	

AVRISP mkII•	

USBtinyISP•	

USBasp•	

Parallel programmer•	

Arduino as ISP•	

These options make it easier to program devices that don’t have serial or USB serial ports. The smaller chips, like
the ATtiny 4313, 2313, 85, and 45, can only be programmed via one of these programmers. These programmers can
also be used to put new bootloaders onto Arduino boards. Additionally, they set the chip configuration and speed.

New Bootloaders
A bootloader is the software on the Arduino board that loads the sketch into memory. The sketch is compiled into
a HEX file. The bootloader receives the HEX file from a programmer called Avrdude, and then loads it as the active
program on the device. Several new bootloaders come with Arduino 1.0.4:

•	 Optiboot: The bootloader for the Arduino Uno rv3.

•	 Diskloader: The bootloader for the Leonardo and 32u4-based boards.

•	 Stk500v2: The bootloader for the Arduino Mega 2560.

USB Firmware for 16u2
The firmware is for the USB support and VID information for official Arduino boards. The USB firmware for 16u2
also contains the LUFA library, which Arduino licensed for official USB support. This firmware is burnable into the
Atmega16u2, the Atmega8u2 for the Arduino Uno, and the Arduino Mega 2560. These are now updated for all the
revision 3 boards. Revision 3 also removes the FTDI USB support and replaces it with the Atmega16u2.

You need to use the DFU programmer to program this firmware into those chips. The DFU programmer is
available here: http://dfu-programmer.sourceforge.net/.

Additionally, a modification to board needs to be enabled to allow the programmer to communicate with the
chip.

http://dfu-programmer.sourceforge.net/

Chapter 1 ■ arduino 1.0.4 Core Changes

14

To enable programming via the DFU, you need to populate the second ICSP programmer, and in some cases
perform a hardware modification described here in order to start working with the 16u2.

This ultimately allows for Arduino to have an onboard USB device separate from the main microcontroller.
You will have to work out the communication protocol between the two devices. However, this will add USB device
support to the latest family of Arduino boards. I think the Arduino Leonardo offers the best of both worlds, because
instead of requiring you to program it separately, it allows you to program it using the Arduino USB API.

Summary
The Arduino 1.0.4 core changes update the built-in command structure for Arduino significantly. The changes to the
object hierarchy affect the behavior of the objects that inherit from the parent objects, allowing for a more regular and
cleaner API to program. A lot of work has also gone into supporting more boards, and updated boards, from Arduino.
The changes to the bootloaders, particularly the addition of board variants, is a significant step toward supporting
more Arduino variations. Now, your own Arduino-compatible board is much easier to create and distribute. For
example, you can use an Atemga32u4 chip on your own custom board, or even make a Leonardo-derived board like
the SparkFun Pro Mini, Adafruit Flora, or Adafruit 32u4 breakout board.

15

Chapter 2

Arduino Development and
Social Coding

Improve the world through sharing your code. Participating in a community of coders brings professionalism to your
hobby. The Arduino world is a community that values the free flow of knowledge and recognizes the benefit of the
community to problem solving.

While sharing code might seem to be an unsolvable puzzle at first, many tools have been used to accomplish the
task of code collaboration. In this chapter, you will learn to use the online code-sharing community called GitHub.
Along the way, this chapter will also explore how the Arduino open source community uses modern social-coding
practices to contribute to projects.

Social coding is the idea that any code you create begins with and contributes to the work of a community of
coders and active users who want to assist you as well as to improve their own projects.

Arduino is a fast-changing platform, and its development and best practices are set not by industry standards
alone, but also by the emergent interaction between industry makers and an open source community of software
and hardware hackers. How you participate in the open source community demonstrates how you are a professional.
In the field of Arduino and open hardware, pro means using emergent techniques in social-coding communities,
alongside making and testing in open, entrepreneurial communities. Open hardware, like open source software, even
if created by a single person, is used and lives on in communities of use. So contribute your Arduino IDE source code
for the good of the world and move along.

Because Arduino is open source, it is always under revision by its community of developers. Your code can
undergo quite a bit change when starting a project, and when people begin to work collaboratively with you. The fast
pace of change in a project needs to be matched by fast updates to the documentation. You and your collaborators
will all need to have the same shared idea, and learn to describe that shared concept via documentation in a
collaborative wiki environment. Even if you work alone, documenting your process will enable you to quickly return
to projects once set aside, keep track of multiple projects at a time, or publish the software to run a kit you want to sell.
To document your project, you need to know how to create pages, and edit a project Wiki using the Markdown syntax.
This will be covered in the Documentation section of this chapter.

Components of Social Coding and Project Management
Project description, issue management, code version control, and documentation are the main components of social
coding and project management. We will dig into each one, including a description of what each is and how you
manage it through GitHub. Instead of these features all being hosted in different systems, they can all be found on
GitHub. Centralizing these features in one place helps your community of users and developers keep up to date with
the project and automatically watch for changes. The project repositories you host at GitHub can be created as public
or private repositories. You choose whether you are hosting a private project for a small team, or a public open source
project. On GitHub, you can host as many public open source repositories as you like, but you have to pay for the
ability to have a private project.

Chapter 2 ■ arduino development and SoCial Coding

16

The first example in this chapter will be a Hello World GitHub example that you can use as a template for
structuring typical projects. All the examples for the book will be organized in a GitHub project repository:
http://github.com/proard. As we learn the tool, you will be able to not only get your own copy of the code for the
book, but you will be able to submit your changes back to the main project.

What Is a Project and How Is It Organized?
A project is the story of what you are working on, and then the hardware and code that make your physical project
blink, move, or communicate. You can’t put physical electronics on your site, so you have to put the description of the
electronics. For our purposes, these files will count as code. and how is it defined?

The basic unit of a project is the code repository. This is where the code lives. Every project is required to have a
name and a description. A readme file is strongly encouraged as well, as it is commonly used as a quick starting point
for people to pick up key concepts and examples of your project. When you use a social-coding tool like GitHub, it
derives a starter page for the project and generates the project’s own unique URL, so users of the project can find it
the project page easily. Hosting a project so that it is public and findable is a good start, but you want to encourage
even more usage and participation. When someone watches, stars, or joins a project, GitHub tracks the changes in the
repository. These changes are then emailed to them, or listed as part of their main page in GitHub.

There are two common patterns for project directory layouts. If you are creating a plain Arduino sketch, then the
folder and the sketch name are the same. So, a sketch called HelloGithub.ino would be placed in a directory called
HelloGithub. As seen in Figure 2-1 for HelloGithub.

Figure 2-1. Example HelloGithub directory layout from Arduino sketches folder

Figure 2-2. Example HelloLibrary directory layout

That directory would be the repository name. This way, when the project is cloned or downloaded from GitHub,
it unpacks as a valid sketch and then can be easily placed in your Arduino sketches folder as in Figure 2-1.

The second pattern is for hosting Arduino libraries you create. In Chapter 13 we go over the details for writing
libraries. In this case there is a pattern to create a repository for the Arduino library you are writing. If you were to write
a library called “HelloLibrary” you would call your repository HelloLibrary. The repository name would automatically be
the directory name that the holds the typical files in an Arduino library. However, the name of the project and the directory
should not include a “_” because Arduino doesn’t allow that in a library name. That way you do not have to change file
names when you want to download or clone the library into the Arduino sketches libraries folder, like in Figure 2-2.

http://github.com/proard

Chapter 2 ■ arduino development and SoCial Coding

17

The Hello Library directory layout contains the required header file, implementation file, and the common sub
directories for examples, documentation, and utility code.

Once the code is in GitHub it can be accessed in several ways from your GitHub project page. Figure 2-3, the
GitHub menu bar, shows that you can download a zip file of the project. “Clone in Mac” triggers the GitHub GUI tool
to clone or copy the project to your local computer. This option is also available for Windows and Linux.

Figure 2-3. GitHub access repository options

Figure 2-3 also shows you can also do a manual copy or clone of the project via secure Hypertext Transport
Protocol (HTTPS), or secure shell (SSH). When you use these secure protocols GitHub will allow you to not just read
data from the project, but write your changes back to the project securely. Finally, each of these techniques will allow
for your sketches to be in your Arduino sketch folder or in you Arduino sketch libraries folder, where you can use or
edit your project code.

In Arduino 1.0.5, there is now a new “Add Library” feature used to install your zipped library projects. This feature
allows you to download the zip archive version of the project directly from GitHub, and it will extract, then install, the
project into your user sketches libraries folder for you. This is very convenient for those developing Arduino libraries.

Many projects use GitHub for project and code management. There are many projects organized in this fashion.
The Arduino project and examples in this chapter are using the same principles.

•	 Arduino (http://github.com/arduino/arduino): The Arduino IDE source code.

•	 ProArduino TiltSpirit (http://github.com/proard/tiltspirit): A simple Arduino game with
LCD and tilt sensors.

•	 ProArduino HelloGithub (http://github.com/proard/HelloGithub): The example Hello
World GitHub for Pro Arduino.

From these project repositories you can find out the source code status, the current issues, and documentation
wiki for a project. Each example represents a project that you can use or help with.

Overview of Version Control
In the code repository is the source code for the project. This code will change depending on project progress,
features, and issues. A project that is alive changes and is revised regularly. Version control provides a method for
multiple people to use, and edit the code simultaneously, and allows you to track the beginning and growth of a
project over time. The basic unit of change in version control is the commit, which contains the list of all modified
files, plus the code changes inside of them. In our case, version control can be thought of as a list of changes that are
committed to the project by yourself or by other collaborators.

Overview of Issue Tracking
Issues are the features, bugs, and change requests for a project. A new project has goals and requirements. These are
translated into issues for which the code delivers the functionally. Tracking issues can be quite difficult. For small
projects that are about tiny tasks, a programmer can simply remember what needs to be done, but when a project
takes you a couple days or more, your community starts giving you feedback and people start wanting to help you.
In these cases, issue-tracking becomes critical. When you track issues, you keep a written list of new features and
improvements. This public list is critical, in that users of your software can add feature requests or describe a problem
in detail. A way to handle this is to assign a unique number, description, and category to each issue; this number

http://github.com/arduino/arduino
http://github.com/proarduino/tiltspirit
http://github.com/proard/HelloGithub

Chapter 2 ■ arduino development and SoCial Coding

18

can then be tracked from when a new issue is reported to when the issue is closed. Even more importantly, the code
changes related to the issue need to be collected together. Every code commit should have a message describing the
collection of changes. This way there is accountability for who made the changes and when the changes were made,
and you will have a good chance of figuring out why the changes were made the way they were. In order to ensure
that the code and issue are hyperlinked together, many users write something like, “This was fixed by #issue_number.”
The good news with GitHub is that every code commit can be connected to the issue it resolves.

When working with issues it is typical to take the following steps.

1. Look for the issue in the issue list.

2. If it does not exist, file a new issue, including a concise subject, a description that includes
a way to reproduce the problem, and, if possible, a source code example or test that fails
due to the noted issue. Then the issue number is generated.

3. People watching and maintaining the project will get an automatic e-mail when you
generate your issue. If you need to discuss the issue, you can send an e-mail to the develop
list with the issue number and a hyperlink to the issue.

4. Someone may claim an issue, or you can assign it to a programmer, and that connection
between issue and programmer can be seen in the issue list. If not claimed, you can
update the code yourself to address the issue, and then create an official request that your
code fix be added to the main project. This request is officially called a “pull request.”

5. Once the issue is confirmed fixed, the issue can be marked “closed” using either the
commit, pull request, or issue manager interface.

6. If for some reason the issue is not truly resolved, you can reopen it.

This pattern helps everyone coordinate their work strategies, and divide up the effort of fixing project issues as
well as project feature goals.

Documentation
Project documentation is the identity of your wiki project. It is where code experts, and people who are not source
code experts and only want to use the project, go to find out what your project is about. It is like a Wikipedia
entry for your project. In fact, the type of documentation we will be looking at is wiki documentation. We will use
GitHub’s wiki documentation to provide a statement of purpose; a description of assembly; a link to step-by-step
images of the project; and a link to the schematics, Eagle, or Fritzing files to the printed circuit boards. Sometimes
people check only the wiki documentation and never see the source.

The GitHub wiki uses what is called Markdown formatting in order to display the text of the pages. The details
of Markdown syntax are found at https://help.github.com/articles/github-flavored-markdown. These pages
can be edited online in the wiki interface. Additionally, other people can use the wiki and help you keep information
about your project up to date.

Project Management for Social Coding
In this section, I describe one way to set up your development environment using the version control system Git and
the online code-sharing repository GitHub. Git is the distributed version control software that GitHub uses as a basis
for their social code management website.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

https://help.github.com/articles/github-flavored-markdown

Chapter 2 ■ arduino development and SoCial Coding

19

Version Control with Git and GitHub
This section will provide one way to set up your development environment using Git and GitHub. It will drill into the
details of how to perform project management in a social-coding world. GitHub at its core is the code repository that
allows for version control.

Version control, or revision control, tracks every change made to software, including who made the change and
when it occurred. This allows for multiple people to work on software simultaneously and merge the changes into the
master code base. The tool at the heart of this is Git.

What Is Git?
Git is a powerful version control system that is used with many open source projects, including Linux Kernel, which
has thousands of contributors and projects. Among the projects tracked with Git are Arduino software projects and
projects from Adafruit Industries. The Git tool, which is a version control system that is completely distributed, allows
for a massive amount of code hacking by multiple developers across the world. Everyone with a copy of the repository
has a complete copy of the entire project with its entire revision control history. What is really unique with this is that
developers are encouraged to fork the project and make their own changes to it.

Each copy of the software is either a clone or a fork. A clone is a copy of the master online repository on
http://github.com/proard/hellogithub; you will use a clone of your project locally on your computer. A fork is an
online official copy of the repository, one that you maintain on your own GitHub account, at http://github.com/
youraccount/hellogithub. Git allows for a highly trackable and secure communication process between repositories.
You can send cryptographically signed changes between you local repository and your remote repository. This
supports secure development and accountability for who, where, when, and what changed.

Here, I will cover the basic starting commands and the preferred development process supported by the Arduino
community. GitHub provides a nice starting guide at http://help.github.com, as well. The steps presented here will
be similar to those from the guide, but they will be geared toward starting your own Arduino projects.

Installing Git
First, you must install Git locally and create an account on GitHub. Check out the “Get Started” section on GitHub,
at https://help.github.com/articles/set-up-git. The command-line version of Git can be obtained from
http://gitscm.org/ and should be installed as you would any software. I recommend selecting the shell options
for Windows. The Git shell makes it easy to access Git on the command line. There is also a GitHub GUI tool for
managing Git repositories which is helpful, but not a replacement for all of the features that come with the Git
command line software.

One additional feature of Git is that it is cryptographically signed, and every commit and change clearly trackable,
and makes programmers accountable for the changes they make. You will need to configure a unique key for your
system. To get started, you’ll need to do the following:

 1. Install Git.

 2. Create GitHub account at http://github.com.

 3. Generate a key pair to authorize your commits.

Mac OS X: Go to •	 https://help.github.com/articles/generating-ssh-keys#platform-mac

Linux: Go to •	 https://help.github.com/articles/generating-ssh-keys#platform-linux

Windows: Go to •	 https://help.github.com/articles/generating-ssh-keys#platform-windows

 4. Set your user and e-mail in Git at http://help.github.com/git-email-settings.

http://github.com/proard/hellogithub
http://github.com/youraccount/hellogithub
http://github.com/youraccount/hellogithub
http://help.github.com/
https://help.github.com/articles/set-up-git
http://gitscm.org/
http://github.com/
https://help.github.com/articles/generating-ssh-keys#platform-mac
https://help.github.com/articles/generating-ssh-keys#platform-linux
https://help.github.com/articles/generating-ssh-keys#platform-windows
http://help.github.com/git-email-settings

Chapter 2 ■ arduino development and SoCial Coding

20

Here is the command-line option for setting your global user information:

$ git config --global user.name "Your Name"
$ git config --global user.email you@example.com

With these settings in place, your system is ready to start working with the Git repositories, and GitHub. Your
system will now properly indicate the code changes you make, and the changes you submit will be cryptographically
accountable. This makes working with GitHub seemless.

GitHub Tools
Now that you have Git installed, and a GitHub account, you have your own area for repositories and account
management on GitHub. I prefer to install the Git command line software prior to the GitHub GUI tools. That way,
there is a command-line tool and GUI access for your project files. This lets you experience the best of both worlds.

Figure 2-4 shows the GitHub GUI configured to display projects on the local system. This shows your repositories
and what organizations they belong to, as well as their overall status. It is possible to drill down into each project and
examine individual files. Importantly, the Git GUI will generate the security keys for you.

Figure 2-4. GitHub GUI on Mac OS X

You are now up and running with GitHub. GitHub GUI will list your repositories on GitHub and synchronize
changes from both your local repositories and your GitHub repositories. It provides a nice level of convenience, but
learning the command line version of Git will offer better access to the revision control features, and showing the code
differences between versions.

http://mailto:you@example.com/

Chapter 2 ■ arduino development and SoCial Coding

21

Version Control, Basic Workflow
In this section we introduce a basic work process for version control. This starts with creating your own example
project in GitHub, then expands to working with projects other people have created, and then reviews the necessary
Git commands that allow you to manage a version controlled project. This includes finding out what changed, and
moving your code from your local repository to your remote repository on GitHub. It is possible to have more than one
remote repository, but for this chapter your repository on GitHub will be the remote repository we use.

Creating Your Own Project
Go to GitHub and select “New repository.” Call the repository HelloGithub. Then fill in the new repository
information, as shown in Figure 2-5. Once finished, select “Create repository.”

Figure 2-5. HelloGithub project configuration page

You want to indicate that this is an Arduino project. All Arduino projects are by default C++ projects. Select the
.gitignore option for C++. This automatically keeps Git from tracking temp files and extraneous files common to C++
and text editors. Once you have selected “create repository,” you are presented with the default view of the project.
the interface should look like Figure 2-6. This view shows you the source code for your project, and links to the many
features of GitHub.

Chapter 2 ■ arduino development and SoCial Coding

22

An initial Readme.md file is created, but you will have to manually edit the Readme.md file with a description of
your project, and how you would like people to configure the hardware, and modify the code to support different
configuration for usage. This edit can be done after you clone your repository to your local machine, or can be done by
live editing the file directly on GitHub. GitHub has a feature where you can browse your source code online and select
a file for editing. When you save a change it will be saved as a standard code commit. Just click on the file “README.
md” in Figure 2-6 to try it.

From Figure 2-6 you can clone the project locally. By cloning the project, you are in fact downloading the
repository from GitHub using the “git clone” command. This is your copy of the entire repository on your local
computer. Cloning can be done with the GitHub GUI application or on the command line, as follows:

$ git clone git@github.com:username/HelloGithub.git

In this case the “username” is your username on GitHub, and the command will copy all the files and version
control information to your local machine. This is your local repository; all changes stay in the local cloned repository
until you push your changes back to your original online repository on GitHub. “Origin” is the official name for your
repository on GitHub. Your local code changes do not automatically move to the “origin.” You will have to “push” your
change to your origin. Also, changes that you edit online directly to your GitHub project or if new code is merged into
your GitHub project from other code contributors. Those changes have to be “pulled” to your local repository.

Editing Code and Checking for Changes
Once you now have a complete copy, or local clone, of your project, the process of working with and modifying code
begins. Through the work process you will manage the changes to the project, and eventually send those changes

Figure 2-6. Initial project page after creation

http://mailto:git@github.com:username/HelloGithub.git

Chapter 2 ■ arduino development and SoCial Coding

23

back to your remote repository at GitHub. You will need to know how to check to your project for changes, commit
those changes, and send them back to you GitHub repository. Then you will want to be able to get new changes form
your GitHub repository and add them to your local repository.

Code can be changed in many ways:

User git clone git@github.com:username/HelloGithub.git

Work process
Make changes to code:

Use the Arduino IDE to edit a sketch like •	 HelloGithub.ino.

Add or delete files.•	

Move files to various places in the project.•	

Edit files in libraries with your favorite text editor.•	

View changes
When you do make changes, you will want to know how to review them. Any time a change is saved, you can issue the
following commands to check your work:

$ git diff

Or show a summary of changes with:

$ git diff --stat

Saving and committing changes
Once you are ready to commit to the changes you made, you can now commit these changes to your local code
repository. Only staged changes are committed without the “-a”, to commit all changes, use “-a”, like so:

$ git commit –a –m "Changed the files and fixed issue #1"

To commit only certain changed files list the named files, use the following:

$ git commit HelloGithub.ino "Update HelloGithub.ino and changed blink rate for issue #1"

Each of these commits are are identified by SHA-1 hash that represents all the changes in the commit. These
commits are saved code transferred from one repositoy or another. Also, you can check out different commits and
recreate the exact file structure and changes in their code. “HEAD” is an alias for the latest commit you have made.
The indicator “~1” is the equivalent of “-1”; they can be combined to read “HEAD~1”. It’s also possible to say “HEAD~2”
which is two commits back from HEAD. For instance, if you want to check out the previous commit you could issue the
following command:

$git checkout HEAD~1

http://git@github.com:username/HelloGithub.git

Chapter 2 ■ arduino development and SoCial Coding

24

Once that checkout succeeds, the code and files match that exact commit. If you look at the file system, you will
see your old files and old changes, but all will precisely match the first commit back form “HEAD”. The syntax “HEAD”
and “^” can be used with the diff command as well. To return to your latest status, issue the command:

$git checkout HEAD

Now your files and code match the official version.
One extremely useful use case is to check out just one file. You may have make changes you are not happy with,

and you will want to only grab an early version or the current version of file. You can use:

$git checkout – filename

This immediately checks out the previous version of the file. You can checkout the file from two versions ago by
using “HEAD~2”

$git checkout HEAD~2 filename

If the file didn’t exists two version back it will complain file is not part of the commit.
You can also checkout what is called a branch:

$git branch HelloBranch

This command automatically creates a branch called “HelloBranch”, but does not switch to it.

$git checkout HelloBranch

This command will check out that branch. If you want to return to your “master” branch you can use:

$git checkout master

At some point you will want to know what branches you have. The command is:

$git branch

The result will list all the branches in your repository.
In our examples we don’t cover branching, but you should learn about branching as you use GitHub. A branch

allows you to test out new ideas, create different versions of your project, or fix code without making changes in your
master branch. In this chapter, I only cover making changes to your “master” branch.

Move changes to your GitHub repository
Now that the changes are committed to the local repository, you need to push them to your GitHub repository, which
you can do by using the following command:

$ git push

If you are working on multiple machines, or multiple people are working with you, then your project on GitHub
could have changed. You may have even accepted a “pull request”. In this case, you will want to bring those changes,
or collection of commits, to your local repository. One method is to “fetch” the changes from GitHub. This grabs the
changes as a set, but does not merge them into your code automatically. The command would be as follows:

$ git fetch

Chapter 2 ■ arduino development and SoCial Coding

25

At this point, you have all the changes from the GitHub repository. You do not have to fetch until something
changes on Github again. At this point you can use “git diff” and examine the changes that were made on the
server from a local copy. Once you are ready, merge the changes from fetch into your local repository. This is the
merge command:

$ git merge master

The “master” key term is for the master branch of the code that was fetched. Most changes can be merged
without a conflict. The pull command combines the fetch of changes with a merge. This is a very convenient way to
get changes from your GitHub repository. The full command is:

$ git pull

Once you have successfully pulled your changes to from your GitHub repository. You can immediately begin
editing, changing code, and working on your project. As needed, use the above commands to help you complete these
common tasks. The options I have outlined are just for getting started with Git; it is a very complex and powerful tool.
This chapter should get you started, but for more detail on the commands, see the Apress book called Pro Git, which
can help you dig in deeper.

Workflow Summary: Creating Your Own Project
We walked through the creation of the HelloGitHub project to demonstrate GitHub’s commands, but there is a
pattern in the steps we took. Follow these same steps for any project you create and you have workflow that ensures
version control for one or multiple creators. Summarizing the steps we already took, we see the common steps for
working on any project:

 1. Create the project on GitHub.

 2. Clone the project to your local machine.

 3. Make changes to the code.

 4. Add or remove files.

 5. Commit changes to your local Git repository.

 6. Push those locally committed changes to your “origin” repository on GitHub.

 7. Repeat steps 2–6 as needed.

These steps allow you to work locally and keep up to date with your project. You can use git diff, and git diff –stat
or any of the many Git commands to check the difference in code version, and the changes over time for the project.

Workflow Summary: Forking Another Project
Frequently there are existing projects that you want to use, but you might want to change the configuration for your
hardware, or want to add a feature to the project. Since I work with many different kinds of Arduino compatible
boards, not every project is designed to work with one I’m using. For instance, between the Arduino Uno, and the
Arduino Mega, the SPI pins are numbered differently. I will typically fork the project, and then make the needed
changes to my forked copy of the project. Once I’m sure the code changes are working, I can do a pull request that
allows the maintainer of the main project to merge those fixes to their project.

We will use the HelloGithub project at the Pro Arduino GitHub site, https://github.com/ProArd/HelloGithub,
and run through the fork process with it. Once you find the HelloGithub project, you can select fork. This copies the
project into your own GitHub area. Then you will want to make a copy to your local machine by cloning it.

https://github.com/ProArd/HelloGithub

Chapter 2 ■ arduino development and SoCial Coding

26

These are the steps for forking another project:

 1. Log into http://github.com.

 2. Visit http://github.com/proard/HelloFork. You will find an example of what you’ll find
there in Figure 2-7.

Figure 2-7. The HelloFork project you want to fork

Figure 2-8. The “Fork” button in context

 3. Select the “Fork” option, in the list of buttons highlighted by Figure 2-8.

 4. GitHub will tell you it is forking the project, with the processing sceen in Figure 2-9.

http://github.com/
http://github.com/proard/HelloFork

Chapter 2 ■ arduino development and SoCial Coding

27

 5. Go to your fork of the project, as in Figure 2-10.

Figure 2-9. GitHub’s forking page

Figure 2-10. Your fork of the project

Chapter 2 ■ arduino development and SoCial Coding

28

6. Clone your project with the following:

$ git clone git@github.com:YourUsername/HelloFork.git

7. Set the official HelloFork repository as the upstream repository:

$ cd HelloFork
$ git remote add upstream git@github.com:proard/HelloFork.git

8. Since you just cloned it there are no changes, but once changes have been made you will
want to fetch and merge changes from upstream with these commands:

$ git fetch upstream
$ git merge upstream/master

9. You can do a test of the merge by doing a dry run, using the following commands:

$ git merge --no-commit --no-ff upstream/master
$ git diff upstream/master –stat

If you want to see the difference between the changes that are being made, you can compare your code with the
code on your GitHub repository with the “diff” command:

$ git diff origin/master

You can get a quick summary of the file changes by using “—stat”

$ git diff origin/master --stat

Given this list, we need to define a couple of new concepts. First, an upstream repository is typically the project
that you forked into your GitHub repository. Secondly, every so often you will want to go back to the original project
and pick up new files and code changes, so that you can synchronize your work with the main project. Your original
project on GitHub is called “origin.” The latest version of code is called “master.” So you can compare the latest
versions of “origin/master,” or “upstream/master,” with your local repository. Over time, projects can get further out of
sync. If you fetch the changes from the upstream repository, you can bring the changes to your local machine without
clobbering your own code, without breaking existing work by hitting it with a write over. The upstream master code
will not automatically update your working area in the local master. After a fetch, you have to take specific action to
merge those changes into your own project. git merge defaults to merging the fetched master with your local working
master repository. The merge process will combine those changes into your local project.

Creating a Pull Request
In the section we will modify the HelloFork.ino sketch to have your Arduino username and submit the change as a
pull request to the official Pro Arduino repository for the HelloFork project. At this point you will already have the
forked from Pro Arduino, and cloned to your local system. So now edit the HelloFork.ino sketch to include your
GitHub username. The code will look like:

/*
* Hello Fork Github Example Arduino Sketch
* Just add your GitHUb account ID and I'll add your pull request to the project.
*/

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://git@github.com:YourUsername/HelloFork.git
http://git@github.com:proard/HelloFork.git

Chapter 2 ■ arduino development and SoCial Coding

29

void setup() {
 Serial.begin(9600);
}

void loop() {
 Serial.println("Add your GitHub name to the code to test creating a pull request");
 Serial.println("Hello Github from:");
 Serial.println("@Ricklon");
 Serial.println("@ProArd");
 Serial.println(“@YourGitHubUsername”);
}

Once you save this code you can check the repository for the change by issuing the command:

$ git status

Result:

On branch master
Changes not staged for commit:
(use "git add <file>…" to update what will be committed)
(use "git checkout -- <file>…" to discard changes in working directory)
#
modified: HelloFork.ino

The status result shows that you modified HelloFork.ino. This change needs to be committed to your local
repository with the following command:

git commit -m "Added a new username to the HelloFork.ino sketch." HelloFork.ino
Result:
[master f6367cf] Added a new username to the HelloFork.ino sketch.
 1 file changed, 1 insertion(+)

The commit uses the “-m” to specify the message. After the message can be a list of files, paths, and or wildcards
to specify the file names and directories to include in the commit. If you want to commit all changed, added, and
deleted files, you can use the “-a” flag. This flag stands for “all.” The message can contain the Markdown shortcuts we
described in the documentation section, like @username to mention a user and link to their account. Now that the file
is committed, it is time to push the commit to your GitHub repository. That can be done be issue the command:

$ git push

Result:

Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 408 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
To git@github.com:ricklon/HelloFork.git
 4e28d3f..f6367cf master -> master

http://git@github.com:ricklon/HelloFork.git

Chapter 2 ■ arduino development and SoCial Coding

30

The push result summarizes all the changes and commit information that is sent to you GitHub repository. The
“To” section. The “4e28d3f..f6367cf” in the result is shorthand for the hash that represents the commit being pushed
to your GitHub repository.

Take a look at the HelloFork menu, as in Figure 2-11. Clicking on the file views the file. In our case we want to look
at the commit and see what was changed as shown in Figure 2-12.

Figure 2-11. HelloFork.ino changes are now on your GitHub

Figure 2-12. View of the changes in the commit

The “+” indicates the new line of code you added. A minus, “-“ represents the removal of code.
Now your project is up to date; all changes between your local repository and your GitHub repository are now

synchronized.

Creating a Pull Request
Once all the changes you want to make are bundled in your repository it’s time to create a “pull request” that will
move your changes to the project you forked your project from. In this case we are using your HelloFork repository.
Go to the your GitHub project for HelloFork. It should appear similar to Figure 2-13.

Chapter 2 ■ arduino development and SoCial Coding

31

The summary shown on Figure 2-13 shows your username, what project is selected, and where the project is
from. At the same level are the project options. We are about to use the “pull request” option. You can also “Watch,”
“Star,” or “Fork” the project from this menu. With “Fork” it shows you the number of forks of the project. If anyone
wants to make a fork of your project, they can select “Fork.” For now just select pull request button, as in Figure 2-14.

Figure 2-13. Your fork of the HelloFork project

Figure 2-14. Pull Request button

After the pull request is selected, you are shown the “pull request” management screen as shown in Figure 2-15.
Here you can decide the details of the pull request. In our case, we’re just going to ask to pull the latest changes from
our project in the master branch, to the Pro Arduino master branch.

Figure 2-15. Pull Request screen

Chapter 2 ■ arduino development and SoCial Coding

32

The pull request we created appears in in Figure 2-15, where we give it a title and description. Sometimes the title
is descriptive enough, but there are times when you need to explain more about what you are doing, and what issues
it addresses, then you can put that information in the main message area. The message area accepts Markdown, as we
described in the documentation section of this chapter. Now that you’ve got your message entered, select the “Send
Pull request” button shown in Figure 2-16.

Figure 2-16. Send pull request button

Figure 2-17. Receiver of the Pull Request screen

Once the pull request is done, it is filed as a request with the maintainer of the project you forked from. So
for most purposes, you are finished. You are just waiting for the maintainer to implement your changes, or for the
maintainer to ask for more clarification. The good news is that while this process is documented in the GitHub system,
the communication between you and the maintainer can be extended in email, and those emails get tracked in
GitHub, too, so that nothing is lost.

How To Merge a Pull Request
Now let’s look at the flip side: What happens when you get a pull request? Once someone has submitted the pull
request, you, as the maintainer, get a message and can immediately check the pull status from the pull request screen
as shown in figure 2-17.

Chapter 2 ■ arduino development and SoCial Coding

33

The summary of this pull request identifies who made the request, and identifies the commit that you are
being asked to merge into your project. GitHub does a quick check to see if the new code can be added to the
original automatically. In our case, the merge request can be automatic. Figure 2-18 shows a close up of that
portion of the screen.

Figure 2-18. Automatic pull requst merge option

In this example, the maintainer selects to “merge pull request” and then is presented with confirmation and the
opportunity to add a note about the merge as shown in Figure 2-19.

Figure 2-19. Confirm that you want to make this pull request

Once that merge is confirmed, then a summary screen is show as in Figure 2-20. The entire merge discussion is
listed, so that you can review the comments. You can also review the commit status before and after the merge.
If there is information about the merge that needs changing, it is possible to edit information about the merge from
this screen.

Chapter 2 ■ arduino development and SoCial Coding

34

Figure 2-21 shows the summary of the merge. It indicates which repositories were merged, and gives an idea of
how much changed, by saying, in this case 1 commit was merged. There are times where multiple commits can be
merged at once.

Figure 2-21. Notification of merged pull request

Figure 2-20. The completed pull request summary showing request closed

Figure 2-20 also shows that the merge is “closed”; this merge was identified as “#2” in the issue system. If you
select “#2” you will be sent to the issue system, where you can see that the issue was closed as in Figure 2-21.

Since the HelloFork project currently has two issues, both pull requests that were completed are shown.
These pull request are in the Pro Arduino project that accepted your request. In Figure 2-22 the screen from
GitHub shows that two closed issues exist, and 0 open issues exist. If you made a pull request earlier to the
project, then you would see them as one or more open issues. Since pull requests are integrated into the issue
system, it is easy to find out who fixed issues, what issues were resolved, and where the changes came from. This
leads us directly to issue management.

Chapter 2 ■ arduino development and SoCial Coding

35

What is issue management?
GitHub provides an issue-tracking system. Issues include new features, problems with existing code, and code review
requests. Each issue is classified in detail by this issue-tracking system. An issue can either be open or closed. It’s
possible to comment on open and closed issues, as well as to reopen a closed issue.

When working with a forked project, the official issue list is maintained on the project you forked your copy from,
not your forked copy.

Watching a project gives you all project updates and information. Starring a project only shows that you like the
project, but doesn’t update you on every detail.

You can sort issues by the following categories:

Everyone’s issues•	

Issues assigned to you•	

Issues created by you•	

Issues in which you are mentioned•	

It’s possible to create milestones as well. These are project-specific goals that you can create and customize. You
can also create your own labels that help organize the issues for your project. Example labels are:

Priority•	

Defect•	

Feature•	

Enhancement•	

Code review•	

Bug•	

Duplicate•	

Won’t fix•	

Question•	

These project labels can be a quick way of prioritizing, because they visually identify the kinds of problems in the project.
Figure 2-23 shows the GitHub Issue Manager main page. In one view, you can get an idea of the “open” issues for

a project. From here you can create new issues, and find issues that you have experienced. It also let’s you search not
just the “open” issues, but the “closed” issues as well.

Figure 2-22. Project issue list shows pull request issue closed

Chapter 2 ■ arduino development and SoCial Coding

36

Issue management with Github
For a quick way to think about issue tracking you can follow the following process:

 1. Look for the issue in the issue list as shown in Figure 2-23.

 2. If it does not exist, file a new issue and include a concise subject, a description that
includes a way to reproduce the problem, and, if possible, a source code example or test
that fails due to the noted issue. GitHub automatically e-mails the creation of new issues to
maintainers.

 3. Make your modification to the project files to fix the issue and submit a pull request from
GitHub.

 4. Confirm the issue is fixed by testing it.

 5. Lastly, close the issue in the issue system, which will update its status.

Figure 2-23. Arduino GitHub Project

Chapter 2 ■ arduino development and SoCial Coding

37

Connecting Version Control with Issue Management
The ways you change your code and files to address an issue are collected in the message portion of a commit. These
commits represent progress towards adding features or resolving issues. Connecting this progress to the issue tracking
system is critical because you want to know what the code changes are for and you want to make it easy to track
what code fixed which issue. GitHub has added some automatic linking features that automate part of this process.
If you refer to issues by “#” pound issue number like “#1” in the commit message, or the issue comment GitHub
will automatically link to the corresponding issue number. Every code commit should have the issue number and
description of the code changes. When the issue number is used, GitHub automatically lists the commit in the issue
history. In one issue discussion, you can follow the entire set of changes to code. issue management

Commit hashes are also automatically linked. Every commit has a Secure Hash Algorithm 1 (SHA-1). This hash is
not a sequential number, but a 160 bit unique string, which looks like “f9bf52794286cd2acf664f8ffd7d7547c1b4dfea,”
and which is automatically linked to the commit by GitHub. This makes it easier to discuss multiple commits and
peak at what was changed.

Documentation
Documentation is important. It is critical that you document what you do. When a project moves from one person who
can control everything to a community of users and developers, it is important that people can find out how to use what
you do, and the best way to help improve or enhance your work. It is possible to put all of your documentation into a
readme file or into a documentation directory for the project, but it can be more convenient to use the GitHub wiki. Here
is the quick and dirty way to use GitHub. Select the Wiki Tab on the project as shown in Figure 2-24.

Figure 2-24.

Github wiki
The default page is called Home and is automatically filled with the text “Welcome to the HelloGithub wiki!” From
here, you can select Edit Page, and enter a main description and provide links to other important project pages.

Creating Pages
The Create and Edit buttons are located on the left side of the wiki page. To create pages, click the New Page button,
and you'll be presented with the Create New Page dialog, as shown in Figure 2-25.

Chapter 2 ■ arduino development and SoCial Coding

38

In the dialog in Figure 2-25, you give your page a title. After selecting “OK” the “Edit Page” screen appears and
you can use the minimal web GUI or just write the new page using markdown syntax as shown in Figure 2-26.

Figure 2-26. Editing the page

Figure 2-27. Reviewing the completed page

Figure 2-25. The GitHub Create New Page dialog

After entering the text in Figure 2-26, select the “save” option and the completed page appears. Figure 2-27 shows
the published page you just saved.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 2 ■ arduino development and SoCial Coding

39

Finally, you need to link the new page back to the home page by editing it and adding the line:

[Home](wiki/Home)

Anything between the brackets will be the hyperlink text. Then anything between the parentheses will be the
link. In our case, we link the “wiki” and the page called “home.” Anywhere this code appears will link back to the main
“Home” page.

Using Markdown
Markdown is an efficient syntax for quickly generating wiki pages. GitHub-flavored markdown is very code friendly and
easy to use. More details of GitHub markdown are found here: https://help.github.com/articles/github-flavored-
markdown. Also, the HelloGitHub project has an interactive version of this file here: https://github.com/ProArd/
HelloGithub/wiki/Markdown. The following are the basic code and page formatting options to get started quickly:

Code Blocks
We work with a lot of code in documentation, and showing examples quickly and easily is critical. To indicate a code
section, we use three back ticks “```” to start a code block and we use three more back ticks “```” to close a code block.
This makes it simple to add code into your documentation and examples. You can also specify the type of highlighting
for your project. In the case of Arduino projects, you would be using C++ or C as the formatting and coloring options.
You can choose not to show highlight with “no-highlght”.

Markdown:

```C++
/*
* Code goes here.
*/
void setup() {
}
void loop() {
}
```

Display:

/*
* Code goes here.
*/
void setup() {
}
void loop() {
}

Linking to files.
The label for the hyperlink is placed between square brackets “[]”, and then the link is placed between the parentheses
“()”, as in the example. When linking external documents or images, the full link can go inside the parentheses. When
linking to pages or files in the wiki, the the entry needs to begin “(wiki/”, and everything after that is a page name or
filename completed by the last “)”.

https://help.github.com/articles/github-flavored-markdown
https://help.github.com/articles/github-flavored-markdown
https://github.com/ProArd/HelloGithub/wiki/Markdown
https://github.com/ProArd/HelloGithub/wiki/Markdown

Chapter 2 ■ arduino development and SoCial Coding

40

Markdown:

[Link to remote site](http://github.com/proard)
[Link to remote file](https://github.com/ProArd/attinysecretknock/blob/master/ATtinySecretKnock/
ATtinySecretKnock.ino)
[Link to wiki files](wiki/TestLink)

Output:

Link to remote site
Link to remote file
Link to wiki files

The results are hyperlinks with the link to labels.

Headings
Heading values are determined by the number of hash “#” symbols. A level 1 header would be one “#”, level 2 “##”, and
level 3 “###”.

Markdown:

H1
H2
H3
H4

Output:

H1
H2
H3
H4

Lists
Lists can be ordered or unordered. It is possible to mix and match ordered and unordered lists. These shortcuts
appear just like html ordered and unordered lists.

Ordered lists

Ordered lists just need to start with a number. GitHub wiki will substitute the correct sequence number.

Markdown:
10. item 1
9. item 2

Output:
 1. item 1
 2. item 2

http://github.com/proard
https://github.com/ProArd/attinysecretknock/blob/master/ATtinySecretKnock/ATtinySecretKnock.ino
https://github.com/ProArd/attinysecretknock/blob/master/ATtinySecretKnock/ATtinySecretKnock.ino

Chapter 2 ■ arduino development and SoCial Coding

41

Unordered lists

Unordered lists can use *, -, or, + as symbols. It doesn't matter which as long as there exists a space between the
symbol and the start of the list value.

Markdown:

* item a
+ item b
- item c

Output:

item a•	

item b•	

item c•	

Linking to Images
Linking to images is just another version of linking. Except the brackets “[]” denote the alt text for the image. The
parentheses hold the link to the image. If the image is in your project you can hyperlink to the raw file. It is possible to
add the image to your project wiki by checking out the project's GitHub wiki, adding an image, committing, and then
pushing it back into your GitHub project wiki. The HelloGithub project wiki can be found here:
https://github.com/ProArd/HelloGithub/wiki/_access

Here’s the syntax of Markdown code to place an image, followed by a specific example:

![alt text](URL to image)

Markdown:

![ProArduino Image](ProArduino.jpeg)

Output:

https://github.com/ProArd/HelloGithub/wiki/_access

Chapter 2 ■ arduino development and SoCial Coding

42

Normal Text
For normal text you can type standard sentence structure. Paragraphs will automatically break at the new line. This
combination of links, code formatting, and basic information structuring can get you started documenting your
project. More importantly, effective documentation can help people understand why project is important, how they
can help support it, and when to join in with you to document it.

Contributing to Arduino Development
Now that you're comfortable with the concepts and tools of social coding, I'll present an example workflow that sets
up an Arduino social development environment, using the concepts and tools discussed in the preceding sections of
this chapter.

The proper way to contribute code and fixes to the Arduino project is to fork the repository to your own area
on GitHub. Then you can make changes to your repository and commit those changes to your repository. Next,
you create a pull request on GitHub for those changes to be merged into the main project. This pull request can be
reviewed, and then rejected or accepted into the project.

Forking Your Own Copy of Arduino
Here are the steps you would use to configure your own repository from Arduino’s official repository on GitHub.
Figure 2-28 shows Arduino GitHub project page.

 1. Log into GitHub at http://github.com.

 2. Go to the Arduino project:

http://github.com/arduino/Arduino.

 3. Select Fork for the Arduino project on the GitHub interface. This places a copy of the
Arduino repository into your own GitHub area. Now that you have that in place, you need
to clone your copy of Arduino to your local machine. This process is called cloning your
fork of Arduino, and can be accomplished with the following command:

$ git clone git@github.com:username/Arduino.git

 4. If you don’t need the entire project history, use this instead:

$ git clone git@github.com:arduino/Arduino.git --depth 1

 5. Set the official Arduino repository as the upstream repository. The upstream repository is
needed so that you can pull down new code that other people add to the Arduino project.
Here are the commands to do so:

$ cd Arduino
$ git remote add upstream git@github.com:arduino/Arduino.git

 6. Now that you have this in place, you can start editing the code. After a while, you'll want to
fetch and merge changes from Arduino every time new code is added. This is done with
the following commands:

$ git fetch upstream
$ git merge upstream/master

http://github.com/
http://github.com/arduino/Arduino
http://mailto:git@github.com:username/Arduino.git
http://git@github.com:arduino/Arduino.git
http://git@github.com:arduino/Arduino.git

Chapter 2 ■ arduino development and SoCial Coding

43

Once you have the your own fork, and have cloned it locally you will want to compile and run the Arduino IDE
from source code. Arduino has documented this process here: https://code.google.com/p/arduino/wiki/
BuildingArduino. Once you are able to run the software using “ant run” you can now make changes to the source
code. It is now possible to find issues in the Arduino project’s issue list and fix them. Using the social coding
techniques you will be able to make changes to the software, and submit your changes as pull requests back to the
Arduino project. It’s a big challenge to get this far with a large project, but it is really worthwhile to be able to make a
great project even better with the power of the open source community.

The combination of tools allows for complete issue tracking and code management.

How to build the Arduino IDE from source
Now that you have the source code, you will want to run the code to identify the changes and test that everything is
working. There is a straightforward process for doing this, but installing the toolkit is a little bit tricky. The process is
different for the Windows, Mac OS X, and Linux platforms.

For Windows:

 1. Install Cygwin:

 2. Install JDK

 3. Install ANT

 4. Configure ANT home directory

 5. Install GIT (you may have already installed it)

 6. Clone your fork of Arduino or Clone Arduino

 7. Go to project directory

Figure 2-28. Arduino organization Arduino repository

4

https://code.google.com/p/arduino/wiki/BuildingArduino
https://code.google.com/p/arduino/wiki/BuildingArduino

Chapter 2 ■ arduino development and SoCial Coding

44

 8. Go to build directory

 9. Type “ant clean”

 10. Type “ant run”

For Mac OS X:

 1. Install ANT

 2. Configure ANT home directory

 3. Install GIT (you may have already installed it)

 4. Clone your fork of Arduino or Clone Arduino

 5. Go to project directory

 6. Go to build directory

 7. Type “ant clean”

 8. Type “ant run”

For Linux:

 1. Install JDK:

 2. Install ANT

 3. Configure ANT home directory

 4. Install GIT (you may have already installed it)

 5. Clone your fork of Arduino or Clone Arduino

 6. Go to project directory

 7. Go to build directory

 8. Type “ant clean”

 9. Type “ant run”

Any Java compilation errors will stop the run. Any updates to the core files must be tested by compiling and
uploading.

Community Resources
The Arduino community is a great source for both beginning and experienced developers. The community allows
for users to share their experiences and help one another learn new skills and troubleshoot difficult problems. The
following list provides some valuable resources offered by the Arduino community:

The Arduino blog (•	 http://arduino.cc/blog)

The Twitter feed for the Arduino team (•	 http://twitter.com/arduino)

The Arduino forums (•	 http://arduino.cc/forum/)

The developer mailing list (•	 https://groups.google.com/a/arduino.cc/
forum/?fromgroups#!forum/developers)

t

http://arduino.cc/blog
http://twitter.com/arduino
http://arduino.cc/forum/
https://groups.google.com/a/arduino.cc/forum/?fromgroups#!forum/developers
https://groups.google.com/a/arduino.cc/forum/?fromgroups#!forum/developers

Chapter 2 ■ arduino development and SoCial Coding

45

The Arduino Playground (•	 http://arduino.cc/playground/)

The Arduino Style Guide for Coding (•	 http://arduino.cc/en/Reference/StyleGuide)

The Arduino Style Guide for Writing Libraries (•	 http://arduino.cc/en/Reference/
APIStyleGuide)

Summary
Using the social-coding practices outlined in this chapter, you’ll be able to create projects that can transition
from personal projects, to group projects, to professional projects that use version control, issue tracking, and
documentation. By using these processes, you can also join other open source projects and contribute feedback,
documentation, issues, and code fixes. If you follow these procedures, your code and ideas can find there way into
Arduino projects as features, fixes, and new libraries.

The patterns outlined in this chapter will be used throughout the book and code examples. All the code examples
can be found at and forked from http://github.com/proard.

http://arduino.cc/playground/
http://arduino.cc/en/Reference/StyleGuide
http://arduino.cc/en/Reference/APIStyleGuide
http://arduino.cc/en/Reference/APIStyleGuide
http://github.com/proard

47

Chapter 3

openFrameworks and Arduino

openFrameworks is a set of C++ libraries that provides an easy method of coding audio, video, and graphical
components. openFrameworks provides mechanisms to easily connect serial devices and Arduinos to personal
computers, making openFrameworks an invaluable tool for Arduino development and a useful next topic for
discussion.

openFrameworks can be compared to interlocking plastic construction bricks in that using individual units does
not require knowing how to make them. The libraries of openFrameworks are a lot like boxes of construction bricks,
allowing creativity to flow without having to code from the ground up and always having a piece that will work. This is
done by utilizing C++ object-oriented programming methods, which add abstraction and reusability. The advantage
to openFrameworks in a development scene is that you can put together proofs of concept without having to do a
lot of low-level coding. Working in openFrameworks also provides working code that can be used as a blueprint to
migrate from when a final project goes into production and needs more optimizations.

Incorporating both openFrameworks and Arduino helps create a proof-of-concept environment for hardware
and software interaction, which uses a development approach that “work fosters ideas”; an exploratory development
style where ideas can be explored without waste. The key to this is reusability: not having to worry about permanently
using a resource and having plenty components to play with. The combination of openFrameworks and Arduino is
cross compatible on most systems.

The disadvantages to this setup are that it may not be production quality, optimized, reliable, or usable for the
masses; things that are arguably less important than sharing and exploration in idea generation. The disadvantages
are taken care of when moving away from the proof of concept to a prototype or putting the project into production.
For developers, showing an idea is more impressive when that idea is something that can be fully manipulated.
Physical models go a long way toward helping ideas to take life and can be easily created with clay, wood, 3D printing,
or various other means. Adding openFrameworks and Arduinos to a physical model can, for example, help you create
a new game controller design that can be used to play games.

Arduino and openFrameworks comprise a nice tool set to help breathe that extra life into an idea. With its simple
code structure, designers, artists, it gives developers the ability to add buttons to make LEDs blink, create controllers
to move virtual objects, and make systems that manipulate physical objects. Both Arduino and openFrameworks have
vast online communities and a plethora of other documentation, making the knowledge to work and develop with
these systems easily available. This chapter focuses on connecting the Arduino to computers via openFrameworks to
expand the functionality of the Arduino.

Getting Started
To get started, make sure that the openFrameworks and Arduino software are set up and working, and also make
sure there is a compatible Arduino board (e.g., an Uno, Leonardo or Nano) available. To download and install
openFrameworks, go to www.openframeworks.cc and follow the setup instructions for your system. openFrameworks
requires C++ and is built for integrated development environments (IDEs) such as Code::Blocks (www.codeblocks.org),
Visual C++ (www.microsoft.com/express), and Xcode (http://developer.apple.com/xcode/).

http://www.openframeworks.cc
http://www.codeblocks.org
http://www.microsoft.com/express
http://developer.apple.com/xcode/

Chapter 3 ■ openFrameworks and arduino

48

The first four examples in this chapter (Listings 3-1 to 3-4) show how to set up serial communications. All the
examples are written using Arduino 1.0.1 and openFrameworks version 0071 but have been tested with Arduino
1.5.1r2 and openFrameworks 0073.

Arduino Code
Listing 3-1 shows the code to set up the Arduino, connect to a push button on pin 8, and check if the button is pressed
or released and report the change in this state to a serial connection using a character. The code also checks for an
incoming character from the serial; a and s signify turning on and off an LED on pin 13, respectively. This passing of
characters is important when developing code for openFrameworks to control the Arduino, thus making the Arduino
a possible controller for a game, a sensor for a door, and so on.

Listing 3-1. Arduino Sketch That Sets Up the Arduino

int button = 8 , ledPin = 13; // pin assignments: button on pin 8,LED on pin 13
boolean oldState = 0 , newState = 0; // state change variables
void setup() {
 pinMode(button, INPUT); ////////////////////////////
 pinMode(ledPin,OUTPUT); // set pin I/O types
 Serial.begin(9600); // starts serial at baud rate 9600
} // end setup()
void loop() {
 newState = digitalRead(button); // save current button state
 if(newState != oldState){ // test for change in button state
 if (newState == true) // for button press, send the "h" to serial
 Serial.print('h');
 if (newState == false) // for button release, send the "l" to serial
 Serial.print('l');
 } // end if(state0 != state1)
 oldState = newState; // save new state to old state for comparison
 delay(40); // delay for bounce control
} // end void loop()
void serialEvent() { // called upon incoming serial
 switch (Serial.read()){ // determine if serial is one of the required inputs
 case 'a': digitalWrite(ledPin, HIGH);
 break; // for input of "a", turn on LED
 case 's': digitalWrite(ledPin, LOW);
 break; // for input of "s", turn off LED
 } // end switch (Serial.read())
} // end serialEvent()

 ■ Note the serialEvent() function does not work with the Leonardo board. to convert for the Leonardo board change
void serialEvent() to if (Serial.available() > 0) and move the loop ending bracket to below the ex void
serialEvent() function.

Verifying the Code
Load Listing 3-1 and hook up the Arduino with a momentary push-button switch and a pull-down resistor hooked
to pin 8. The LED set up on pin 13 is optional because the Arduino has one on the board. With the board

Chapter 3 ■ openFrameworks and arduino

49

set up as per Figure 3-1 and plugged in, start the serial monitor in the Arduino IDE and match the baud rate of 9600.
When the button is pressed, it causes an h or an l character to be displayed for a high or low state change. Sending the
Arduino an a or an s will turn on or off the LED.

Figure 3-1. Arduino circuit for Listing 3-1

Arduino Serial Functions
Listed following is a reference of Arduino serial functions and what they are used for. These functions reside in the
predefined Serial object. To call any of the serial functions, use Serial. before the name, like so:

Serial.begin(9600);

•	 void begin(speed): Opens and sets a serial port at a baud speed equal to an unsigned long.
Returns nothing.

•	 void end(): Closes the serial connection, releasing the TX and RX pins.

•	 int available(): Checks for data in the serial buffer and returns the number of bytes in the buffer.

•	 int read(): Returns the first incoming byte in the serial buffer as an int, and then removes
the byte. Successive reads will move through the buffer, much like dealing a deck of cards.

•	 int peek(): Reads the incoming serial buffer’s first byte, returns as an int, and leaves the data
in the buffer. This function is like peeking at the top card of a deck of cards.

•	 void flush(): Clears the serial buffer’s data. flush() will clear data after the buffer data is sent out.

•	 size_t print / println (value, format): Sends a human-readable translation of data.
Digits are sent as ASCII-equivalent strings, and characters are sent as bytes. This function can
have a format of DEC, HEX, BIN, or OCT. format can also be used to define the number of
bytes to send. println is the same as print, except it sends a new line to the end of the value.
Returns the number of bytes sent; reading is not required.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 3 ■ openFrameworks and arduino

50

•	 size_t write(value, size): Sends data in binary bytes instead of ASCII. write() can send
a single byte value, in which case size is not needed. A string and buffer are sent as a series of
bytes. size declares the buffer’s number of bytes to send. Returns the number of bytes sent.

•	 void serialEvent(){ }: Can be added to a sketch that is called any time there is incoming
serial activity.

openFrameworks Setup
With the Arduino code outputting and accepting input from the serial monitor, other programs can be developed
using C, C++, Java, or any other computer language from scratch to connect the Arduino to the computer. Coding
from scratch, however, can be a bit tedious for a proof-of-concept project. openFrameworks provides a nice prebuilt
interface for programming serial with C++ and also adds many other useful tidbits for audio and graphics. The next
set of examples will show how the openFrameworks libraries can be used to connect to the Arduino and the sketch
from Listing 3-1.

To verify that openFrameworks is working properly and the library is compiled, make a copy of the empty
example folder in the openFrameworks distribution; keep the folder in the same directory and rename it to ch3.

Note ■ the examples are located in the openFrameworks examples directory. an empty example to start with is
located in the apps/myApps subdirectory of the openFrameworks main directory.

Open the workspace for Code::Blocks or the VC++ project file in the renamed folder, and then compile. Two
things should compile: emptyexample and libopenFrameworks. After both parts are compiled successfully,
openFrameworks is ready for new code. Coding the examples in this chapter for openFrameworks applications is
done in the Code::Blocks project file or the Microsoft Visual Studio solution (not the one named libopenFrameworks,
but the one named after the project—e.g., emptyexample.workspace). The files for the examples in this chapter are
available for download from www.apress.com/9781430239390 and are contained in three files: main.cpp, testapp.cpp,
and testapp.h. These three files can replace the files with the same name that are in the renamed folder src
directory.

Caution ■ moving and compiling projects outside of the openFrameworks apps/examples directory may cause
dependencies issues. to solve this, point all the dependencies to the location of the openFrameworks main directory.

 in 32-bit Gnu/Linux, the workspace file for Code::Blocks may point to the 64-bit libraries. solve this by opening the
workspace file in a generic text editor and change linux64 to linux.

Connecting to the Arduino from openFrameworks
Listings 3-2 through 3-4 make up the three files to create and run a basic openFrameworks program to connect to
an Arduino to send and receive data without having to use the serial monitor or console, while also providing extra
computing power by allowing the Arduino to connect to a C++ program.

http://www.apress.com/9781430239390

Chapter 3 ■ openFrameworks and arduino

51

Listing 3-2. main.cpp

#include "ofMain.h" // include files
#include "testApp.h" // declarations for the testapp class
#include "ofAppGlutWindow.h" // for using OpenGL and creating windows
int main() {
 ofAppGlutWindow window; // sets up an OpenGL window object
 ofSetupOpenGL(&window,200,100, OF_WINDOW); //sets window size in pixels
 ofRunApp(new testApp()); // create testapp object & enter program loop
} // end int main()

openFrameworks code is set up to be event driven and window based, the same as other graphical-interface
programs. The main.cpp file contains the main() function, which is the entry point to the openFrameworks programs.
The main() function sets parameters for the window, including the window size and window mode. It is rare to make
many changes in main.cpp; most of the time the only thing that will change is the window size.

Listing 3-3. testapp.h

#include "ofMain.h"
class testApp : public ofBaseApp{
 public:
 void setup(); // for setting initial parameters
 void update(); // code in this function is constantly run, events will interrupt
 void draw(); // runs after update,this updates & creates the window objects
 void mousePressed(int x, int y, int button); // on event function
 bool SendSerialMessage; // signals that data needs to be sent
 char ledcommand ; // hold what state the LED is in
 char Returned; // hold returned char from Arduino
 ofSerial serial; // this is the object to handle serial
};// end class testApp : public ofBaseApp

The testApp class inherits common functionality from the ofBaseApp class. This is where the function prototypes
are created. Variables that will be used in many functions can be declared here. There is a set of functions that are
called when events occur, such as mouse movement or using the keyboard. Note the line where you need to change
COM4 to match your Arduino setup.

Listing 3-4. testapp.cpp

#include "testApp.h"
void testApp::setup(){
 ofSetVerticalSync(true); // helps to smooth out object drawing
 ofBackground(255,255,255); // set background color to an RGB value
 serial.setup("COM7", 9600); // change "COM7" to match where the Arduino is
 ledcommand = 's'; // set initial state of the LED
 serial.writeByte(ledcommand); // tell Arduino of the initial state
 SendSerialMessage = false; // nothing to send yet
} // end void testApp::setup()
 void testApp::update(){
 if (SendSerialMessage) // is there serial information that needs to be sent
 serial.writeByte(ledcommand); // tell the Arduino to change LED state
 if (serial.available()) // check to see if there is incoming data
 Returned = serial.readByte(); // save the incoming data

Chapter 3 ■ openFrameworks and arduino

52

 SendSerialMessage = false; // reset the need to send data to the Arduino
}//end testApp::update
void testApp::draw(){ // defines placement and draws objects in the window
 ofFill(); // fills geometry with a solid color
 if (Returned == 'h') // is the button on the Arduino being pressed
 ofSetColor(0,0,255); // set the first circle color to full blue
 else // the button is not pressed or the state is not known
 ofSetColor(0,0,127); // set the first circle color to 1/2 blue
 ofCircle(50,50, 50); // draw the first circle at last set color
 if (ledcommand == 'a') // should the LED be on
 ofSetColor(0,255,0); // set color to full green for the second circle
 else // LED should be off or not known
 ofSetColor(0,127,0); // set color to 1/2 green for the second circle
 ofCircle(150,50, 50); // draw the second circle at last set color
} //end void testApp::draw()
void testApp::mousePressed(int x, int y, int button){
 SendSerialMessage = true; // inform update function that there is data to send
 if(ledcommand == 'a') // if the LED is ON
 ledcommand = 's'; // change LED to be OFF
 else // if the LED is OFF
 ledcommand = 'a'; // change LED to be ON
} //end testApp::mousePressed

Verifying the Code
Make sure that the Arduino that was set up in Listing 3-1 is plugged into the computer and take note of the port that it
is plugged into.

•	 COM* is for Windows

•	 /dev/tty* is used for Linux/Unix and Mac OS X

Change the serial.setup(COM4,9600) line in Listing 3-4 to match the Arduino’s connecting point. Once the test
app is set to know where the Arduino is, compile the examples. Running the program will open a window frame that
looks like Figure 3-2, with the first circle representing the push button and the second circle showing the state of the
LED. To change the LED state, click in the window with the mouse.

Figure 3-2. Example of the running program

Chapter 3 ■ openFrameworks and arduino

53

openFrameworks Serial Functions
The following reference list is for the openFrameworks serial functions. Most of the functions work just like the
Arduino’s counterpart functions. The serial object must be declared before using and calling the openFrameworks
serial functions. The serial object comes from the ofSerial class; just as a variable is declared, a serial object is
created by using the following:

ofSerial serial;

To use any of the functions, use the name declared for the object—for example, serial.setup();. Here are the
functions:

•	 void enumerateDevices(): Lists the available serial devices.

•	 void close(): Closes the serial connection.

•	 bool setup(int, int): Connects to the device number corresponding to the list outputted by
enumerateDevices() at the desired baud speed.

•	 bool setup(): Opens a serial connection on the first available device at baud 9600 and returns
a fail or succeed.

•	 bool setup(string, int): Uses a string to declare what serial device to connect to. The
second parameter sets the baud speed and returns a fail or succeed.

•	 int readBytes(unsigned char, int): Takes a pointer to an array of characters, attempts to
retrieve the number of bytes equal to the second parameter, and returns the number of actual
bytes read (compare to the requested amount of bytes to error-check).

•	 int readByte(): Returns a single byte from the connected device.

•	 int writeBytes(unsigned char, int): Takes a character array or string and an amount of
bytes to write, and returns the amount written for error checking.

•	 bool writeByte(unsigned char): Sends a single byte to the connected device and returns a
fail or succeed.

•	 void flush(bool, bool): Clears one or both of the serial buffers (one buffer for send, one
buffer for receive).

•	 int available(): Returns the number of available bytes in the receive buffer.

Coding Once Using Firmata and ofArduino
In keeping with the spirit of “work fosters ideas,” working with two different pieces of code (one on the Arduino
and one using openFrameworks) is a bit inefficient for exploring ideas, especially when changing things frequently.
Luckily, there are items included with the Arduino IDE and openFrameworks (a program for the Arduino and a
built-in class for openFrameworks) that make it possible to write single programs that take care of having to separately
code the Arduino.

Firmata is a communication protocol for the Arduino that allows for on-the-fly configurations •	
without having to restart or reprogram the Arduino. Standard Firmata is included with the
Arduino IDE.

openFrameworks complements Firmata by including a class called •	 ofArduino, which handles
both communication and configuration of the Arduino.

Chapter 3 ■ openFrameworks and arduino

54

Setting Up Firmata
Set up the Arduino board with the components connected as in the schematic in Figure 3-3, and then upload the Standard
Firmata sketch. The sketch is located in the Arduino IDE under File ➤ Examples ➤ Firmata ➤ StandardFirmata.

Figure 3-3. Arduino circuit for Listing 3-5

To verify that Firmata is working on the Arduino, download and run the test app from www.firmata.org/. Select
the port to connect to from the drop-down menu, and the app will show all the pins, which have drop-down boxes for
pin configuration and buttons for output values, as shown in Figure 3-4.

Note ■ the Leonardo need the Firmata library updated. instructions and updated library available at
www.github.com/soundanalogous/Breakout/wiki/Updating-Firmata-in-Arduino

http://www.firmata.org/
www.github.com/soundanalogous/Breakout/wiki/Updating-Firmata-in-Arduino

Chapter 3 ■ openFrameworks and arduino

55

Figure 3-4. Firmata testing application

The Firmata test app is especially usefully for testing out component setups that use multiple pins, such as a
three- to eight-line MUXs, seven-segment displays , keypads, and servomotors.

Controlling the Arduino with openFrameworks
The code in the next example uses the same main.cpp as Listing 3-2. The header file testapp.h in Listing 3-5 still
declares the class function prototypes setup(), update(), draw(), and mousePressed(). The two new function
prototypes are set up to mimic the Arduino’s coding structure. The function arduinoSetup() is for initializing pin
configurations, and the function arduinoLoop() is the equivalent to loop in Arduino sketches.

Listing 3-5. testapp.h for the Standard Firmata Sketch Communication

#include "ofMain.h"
#include "ofEvents.h"

Chapter 3 ■ openFrameworks and arduino

56

class testApp : public ofBaseApp {
 public:
 void setup();
 void update();
 void draw();
 void mousePressed(int x, int y, int button);
 void arduinoSetup(const int & version); // Arduino equivalent setup function
 void arduinoLoop(); // Arduino-equivalent loop function
 bool ledcommand;
 bool pin13; // pin13 data container
 bool pin8; // pin8 data container
 float analogPin0; // pin8 data container
 bool isArduinoSet; // flag to know when Arduino is connected and configured
 ofArduino arduino; // the Arduino object
}; // end class testApp : public ofBaseApp

In testapp.cpp of Listing 3-6, the functions arduinoSetup() and arduinoLoop() perform the same
functions of an Arduino sketch with openFrameworks on top of the Arduino-style functions. Firmata and the
openFrameworks ofArduino class make the serial communication less apparent. By carefully mimicking the same
structure as an Arduino sketch, the conversion to an actual Arduino sketch is made simpler if the conversion
becomes necessary, as when moving to a more professional setup. Keep in mind it is possible to develop code in
openFrameworks that may require more space and computing power than might be available on the Arduino. This
is especially important to remember when using Firmata as a tool in making proofs of concept to eventually be
used solely on the Arduino.

Note ■ Firmata is capable of using i2C and other communication functionality; however, openFrameworks does not
currently support i2C functionality (as of version 0071).

Example 3-6. testapp.cpp for Standard Firmata Communication

#include "testApp.h"
void testApp::setup() {
 arduino.connect("COM7"); // remember! change this to the proper port
 ofAddListener(arduino.EInitialized, this, &testApp::arduinoSetup);
 /*the ofAddListener waits for the Arduino to perform a handshake telling the program that it is
ready to be configured and set up. This will call arduinoSetup*/
 isArduinoSet = false; // this flag is set false until the Arduino is set up
} // end void testApp::setup()
void testApp::update() {
 testApp::arduinoLoop();// perform the Arduino-style code
} // end void testApp::update()
void testApp::draw() { // objects are drawn to the screen in the order called
 if (isArduinoSet){ // do not run this code until Arduino is operating
 ofFill();
 if(pin8 == ARD_HIGH)
 ofSetColor(0,0,255);// if button on pin8 pressed, brighten the circle
 else
 ofSetColor(0,0,127);// blue is dim if button is released

Chapter 3 ■ openFrameworks and arduino

57

 ofCircle(50,50,50); // draw circle at (x,y,radius) in pixels for button
 if(pin13 == ARD_HIGH)
 ofSetColor(0,255,0); // when LED is on, draw full green
 else
 ofSetColor(0,127,0);// green is dimmed when LED is off
 ofCircle(150,50, 50); // draw circle at (x,y,radius) in pixels for LED
 ofSetColor(255,0,0); // set color for analog potentiometer
 // draw rectangle with corners at (x1,y1,x2,y2)
 ofRect(0, 45 ,(analogPin0*200) , 10); // rectangle is dynamic on the x-axis
 // analogPin0 is a percentage multiplied by window width
 } // end if (isArduinoSet)
}// end void testApp::draw()
void testApp::mousePressed(int x, int y, int button) {
 if(ledcommand == true) // if LED is ON
 ledcommand = false ; // flag the LED to turn OFF
 else // the LED is OFF
 ledcommand = true; // flag the LED to turn ON
}// end testApp::mousePressed
void testApp::arduinoSetup(const int & version) {
 ofRemoveListener(arduino.EInitialized, this, &testApp::arduinoSetup);
 // there is no need to continue to listen for the Arduino, so clear memory
 arduino.sendAnalogPinReporting(0, ARD_ANALOG);// turn on analog pin0
 arduino.sendDigitalPinMode(8, ARD_INPUT);// set digital pin8 as input
 arduino.sendDigitalPinMode(13, ARD_OUTPUT);// set digital pin13 as output
 isArduinoSet = true;// inform the rest of the program that Arduino is ready
}//end void testApp::arduinoSetup(
void testApp::arduinoLoop() {
// do not run this code until Arduino is operating
 if (isArduinoSet){
 pin8 = arduino.getDigital(8);// digital read pin8
 pin13 = arduino.getDigital(13);// digital read pin13 verifying state
 analogPin0 = arduino.getAnalog(0)/1023.0; // analog read A0
 arduino.sendDigital(13, ledcommand);// digital write new state
 }// end if (isArduinoSet)
 arduino.update();// get any changes that the Arduino might have
}// end void testApp::arduinoLoop()

Verifying the Code
When done looking over and compiling the code, plug in the Arduino with the components set up in as Figure 3-3 and
the standard Firmata sketch uploaded. When running, the program will open a window with the same size as the prior
example. The program will also have the same two circles representing the button and LED, respectively performing
the same functions. A red bar is added to the program that will go from side to side, representing the full sweep of the
potentiometer.

Note ■ the arduino may be required to reset, via the reset button, before the listener initializes and recognizes the
arduino. the listener is built into openFrameworks to listen for an arduino on the connection.

Chapter 3 ■ openFrameworks and arduino

58

Key Constants Used by ofArduino
ofArduino defines some useful constants for more readable code. The following list is a reference of names and values
of the constants. The first part of the constants, ARD, is short for Arduino, and is a reminder that this is dealing with the
hardware. The second part is the type—for example, the pin modes or state declarations.

Pin modes:•	

•	 ARD_INPUT = 0x00

•	 ARD_OUTPUT = 0x01

•	 ARD_ANALOG = 0x02

•	 ARD_PWM = 0x03

•	 ARD_SERVO = 0x04

Pin states:•	

•	 ARD_HIGH or ARD_ON = 1

•	 ARD_LOW or ARD_OFF = 0

ofArduino Reference of Class Functions
The following list is a reference for the class functions that make up the ofArduino class. The functions that are
included in the ofArduino class are used to control and connect to Arduinos that have the standard Firmata sketch
loaded. Most of the functions are a direct counterpart of the functions used in the Arduino IDE and work the same
way; for example, sendDigital() is the same as digitalWrite(). The functions require an ofArduino object declared
before they can be used. You can connect multiple Arduinos to the same computer by declaring separate objects for
each Arduino.

•	 bool Connect(port, speed): Opens an Arduino connection on a serial port and takes a
string for the device connection, such as /dev/ttyUSB0, COM4 or /dev/tty.usbserial-A4001JEC.
The second parameter is for nondefault baud speeds and can be omitted in
standard configurations.

•	 void disconnect(): Releases the Arduino connection.

•	 bool isInitialized(): Returns true if a successful connection has been established and the
Arduino has reported that firmware from the Firmata sketch has been uploaded.

•	 void update(): Used to update the current state of the Arduino’s incoming information; this
should be called regularly.

•	 void sendDigitalPinMode(pin, mode): Sets the pin mode of a digital pin (one of pins 2
through 13) and sets the pin as one of the digital modes of ARD_INPUT, ARD_OUTPUT, ARD_PWM, or
ARD_SERVO. If the pin is an input, the reporting will be turned on.

•	 void sendAnalogPinReporting(pin, mode): For analog pins 0 through 5, turns the reporting
to ARD_ON or ARD_OFF. Analog pins can be used as digital pins 16 through 21 or as PWM pins.
The whole group is either analog or digital.

•	 void sendDigital(pin, state): Sets the state of the specified digital pin to either ARD_LOW or
ARD_HIGH.

Chapter 3 ■ openFrameworks and arduino

59

•	 void sendPwm(pin, value): Sets the PWM value for pins set to ADR_PWM (chosen from pins 3,
5, 6, 9, 10, and 11); the value is between ON (255) and OFF (0).

•	 void sendServo(pin, sweep): Uses pin 9 or 10 and sends servo signals between 0 and
sweep-angle default 180.

•	 void sendServoAttach(pin, min, max, sweep): Defines the following servo parameters:

The pin•	

Minimum pulse width (defaults to 544)•	

Maximum pulse width (defaults to 2400)•	

Angle of sweep (defaults to 180)•	

•	 int getDigital(pin): Used on pins 2 through 13:

For pins set as •	 ARD_INPUT returns the last state the pin reported

For pins set as •	 ARD_OUTPUT returns the last value sent to the pin

•	 int getPwm(pin): For pins set as ARD_PWM, returns the last set PWM value for the pin
requested (usable pins are 3, 5, 6, 9, 10 and 11, or pins 16 through 21 if analog pins 0 through 5
are set as digital pins).

•	 int getServo(pin): Returns the last value the servo was set to.

•	 int getAnalog(pin): Used for analog pins 0 through 5 and returns a value between
0 and1023.

•	 string getString(): Returns the last string received.

•	 int getDigitalPinMode(pin): Returns ARD_INPUT, ARD_OUTPUT, ARD_PWM, ARD_SERVO, or
ARD_ANALOG.

•	 int getAnalogPinReporting(pin). For analog pins 0 through 5, returns ARD_ON or ARD_OFF.

Expanding on the Idea
We now have openFrameworks controlling the Arduino, which is running the standard Firmata sketch. The
next example illustrates the increase of efficiency that can be gained in development by having Arduino and
openFrameworks integrated.

1. Start the next example by attaching a servo to pin 10 and another LED to pin 3, in addition
to the other components from the last example. Use Figure 3-5 for reference.

2. After the two new components are in place, start the Firmata test app to check that all the
components are working.

3. Set the pins to the following configuration:

•	 pin3 = PWM

•	 pin8 = input

•	 pin10 = servo

•	 pin13 = output

Analog pin 0•	

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 3 ■ openFrameworks and arduino

60

Figure 3-5. Arduino circuit for the “Expanding on the Idea” example

For the rest of this example, the only changes are going to be to the code.
For the hardware, the potentiometer is going to control the servo, while the brightness of the LED on pin 3 will

represent the position of the servo. When the button is pressed, the LED on pin 13 will turn on; at the same time, the
servo and the other LED will pause and stop accepting new values from the potentiometer until the button is released.

Changing Code
While openFrameworks is controlling the Arduino, it will simultaneously be displaying a representation of what the
hardware is doing. The program will have a window the same size as the two prior examples, with shapes representing
the button, the LED, and the potentiometer’s position. The only change to the graphics is that we will dynamically
change the color of the bar to represent the new brightness value for the LED, with the color fading from black to full
red with the servo and potentiometer’s full swing.

Open the project from Listings 3-5 and 3-6. The same main.cpp will be used without alteration. Within
testapp.cpp, the entire mousePressed() function can be removed or commented out, along with its prototype in
testapp.h. You can omit the following line from the arduinoLoop() function:

arduino.sendDigital(13, ledcommand);

The last thing to comment out is the variable declaration bool ledcommand; from testapp.h. With the code that
is no longer needed out of the way, change the line ofSetColor(255,0,0);, located in the draw() function, to

ofSetColor((analogPin0*255),0,0);

Chapter 3 ■ openFrameworks and arduino

61

This change takes advantage of the analog percent value to evenly change the color in proportion
to the bar.

 Add the following code to the arduinoSetup() function below the code line
arduino.sendDigitalPinMode(13, ARD_OUTPUT); defining the new componets. Note that the text following the
comment delimiters (//) is optional.

arduino.sendDigitalPinMode(3, ARD_PWM); // set pin 3 for PWM
arduino.sendDigitalPinMode(10, ARD_SERVO);// set pin 10 to accept a servo
arduino.sendServoAttach(10);// define servo information as default
isArduinoSet = true;

Listing 3-7 shows the next portion of code to add, which is the last for this example. The code handles the button
pause, the servo, and the PWM LED, and gets inserted into the arduinoLoop() function before the ending bracket of
the if (isArduinoSet) statement and after analogPin0 = arduino.getAnalog(0)/1023.0;.

Listing 3-7. The End of “Expanding on the Idea” Example

 if (pin8 == ARD_HIGH){ // check if button is being pressed
 pin13 = true; // flag the draw function to change
 arduino.sendDigital(13, ARD_HIGH);// turn on LED
 } // end if pin8 == ARD_HIGH)
 else {
 arduino.sendDigital(13, ARD_LOW);
 arduino.sendPwm(3,analogPin0*255);
 arduino.sendServo(10, analogPin0*180);
 } // end else

Verifying the Code
With all the code changed and compiled, start the program with the Arduino plugged in. The program should look
like Figure 3-6. When the screen is fully drawn, the pause button will have to be pressed to get the servo and the LED
to activate.

Figure 3-6. The look of the final example

The changes that were made make the Arduino act differently without your having to upload a new sketch.
Note that the changes now allow the potentiometer to control the sweep of the servo and the brightness of the LED
when the potentiometer is swept from maximum to minimum. Also take note of the behavior when the pause is held
while the potentiometer is being moved.

Chapter 3 ■ openFrameworks and arduino

62

More Ideas to Work With
openFrameworks has a lot more functionality than described in this chapter. openFrameworks can manipulate sound
images or even 3D objects, and the connection to serial devices or Arduinos allows controllers to be built that can
control the computer. You can create programs to control the Arduino as well. With all the possible projects that you
can create using Arduinos, the extra features that openFrameworks provides may make it hard to decide where to go
and what to do. Try out some of the ideas listed below; they came up during a few brainstorming sessions. These ideas
should help further your exploration of openFrameworks while providing more experience with the platform.

Use a keypad to select a song from a playlist (i.e., make a jukebox).•	

Make a small game using an old hard drive motor for the input controls.•	

Create a logging system that records data to a database such as MySQL using Arduino and •	
openFrameworks.

Build a dynamic scrolling LED marquee that also displays the characters being typed on the •	
computer screen.

Create an RGB LED array to build a mood light that changes in response to audio or visual cues.•	

Summary
This chapter discussed the fundamental steps to integrate openFrameworks with Arduino. As a development tool,
openFrameworks may provide the catalyst that can take a good idea to the next step. Its versatility is only increased by
providing two great ways to develop: using serial or Firmata. With time and use, most developers will find a preference
for one method over the other.

openFrameworks has a lot more functionality than can be covered here, but this chapter should provide you
the knowledge and confidence to delve deeper into openFrameworks. Also check out other resources available; the
forums at www.arduino.cc/ and www.openframeworks.cc/ are great places to find more information. The examples
included with openFrameworks can also provide excellent insight.

http://www.arduino.cc/
http://www.openframeworks.cc/

63

Chapter 4

Android ADK

Since the introduction of the Android operating system in 2007, Android has become one of the more popular
embedded Linux distributions available to consumers and hobbyist for development purposes. Google provides a vast
knowledge base to help with getting started in developing Android-specific applications; the Google documentation,
reference material, and SDK are available at http://developer.android.com.

The popularity of Android development for the hobbyist can be attributed to the ease and cost of the available
information. The draw for vendors to use Android as an operating system for many types of consumer electronics is that
Android provides a great starting point by having much of the development for an operating system completed, and by
providing the capacity for many different hardware configurations. As an operating system, Android provides a framework
for vendors to add their own unique functionality, while having a support structure and standards of compatibility for
third-party content developers. The market environment for Android mimics that of Linux—each system has variations
within its individual distributions. The differences between Android versions and the modifications by vendors have led
to a fragmentation in support for development. This became more apparent when Google announced the Accessory
Development Kit (ADK) in 2011.

The ADK was announced to provide a toolkit to developers so that third-party devices could be made to expand
the hardware functionality of systems running Android. The ADK was first released for version 3.1 and then ported
back to version 2.3.4. The fragmentation of Android devices has made it difficult to develop commercial devices that
could be supported on a majority of systems running Android. The amount of off-the-shelf device support that can
support the ADK protocols could change as more devices adopt the Ice Cream Sandwich version of Android. The ADK
is comprised of two parts: a protocol for the device and hardware for the actual accessory.

When Google released the ADK software and libraries for the operating system, it also released a hardware kit
that resembles an Arduino Mega with a shield attachment, and since then, many open source hardware developers
have made boards compatible with the original ADK device. Seeed Studio and Arduino both make an ADK board
that uses the ATMega 2560 chip. Both boards work the same and can be programmed in the Arduino development
environment. SparkFun Electronics makes an ADK-compatible board named IOIO (pronounced Yo-Yo), but is based
on a PIC microcontroller and has a different programming environment.

At the heart of ADK methodology having a device that can act as a USB host give the impression that the Android
device is plugged into a computer to initiate communications. On the Arduino Mega ADK board, this is done by adding
an SPI-based USB host processor. The chip used in creating the host connection uses the SPI bus for data transmission
and is connected to the appropriate MOSI (master out slave in), MISO (master in slave out), SS (slave select), and
SCLK (serial clock) pins. The USB functionality also uses pin 7, making it unavailable for other uses. Arduino shields
are available to add the ADK functionality to other Arduino boards, such as the UNO and the basic Mega. Theses ADK
shields are created by third-party vendors, including SparkFun for the USB host (www.sparkfun.com/products/9947).
A variety of different host shields are also available from Circuits@Home (www.circuitsathome.com).

Devices that use the USB host chip are not limited to working with Android; they are also capable of working
with other client devices, such as USB keyboards. But the focus in this chapter is Android-specific functionality with
the Arduino Mega ADK. Before the ADK was available, hobbyists and makers were using a method that involved the
Android Debugging Bridge (ADB) to add the functionality that is available with the ADK. The ADK can be used to add
controls for robotics, read from nonstandard sensors, and interface with machines such as the MakerBot.

http://developer.android.com
http://www.sparkfun.com/products/9947
http://www.circuitsathome.com

Chapter 4 ■ android adK

64

Android Devices
Before getting a board that is capable of USB hosting, you must locate a suitable Android target. As mentioned before,
not all Android devices are currently capable of handling the ADK protocol. Devices that were made before the release
of the ADK are the ones most likely not able to support ADK protocol without modification. Devices that use versions
of Android as old as or older than 2.3.3 are not capable of handling the ADK methods at all. The older devices are still
capable of using the ADB to create data connections.

What to Check For
For a device running Android to be nativity capable of using the ADK, the version must be 2.3.4 or later, but this not
conclusive. The conclusive check is in the Google Play app market: search for “ADK demo kit.” If it’s not available, the
device does not have the required libraries installed. It has been found that some devices are capable of installing the
demo kit, but lack an option that needs to be compiled into the operating systems kernel. This will show up when
the demo kit is installed and run. The ADK hardware does not have to be connected; if the demo kit app shows a
screen that asks for an ADK board to be connected the device is ready for ADK development.

Known Working Devices
Following is a list of Android devices that have been found to nativity work with ADK. (There are possibly more, with
new Android devices coming out almost daily.) The devices that have native support are prime targets for commercial
applications for developing accessories.

•	 Acer Iconia A100: This is a 7-inch tablet running Android version 3.2, running a dual-core
1 GHz Cortex-A9 with 1 GB of RAM.

•	 Acer Iconia A500: This is a 10.1-inch tablet with the same processor and RAM as the Iconia
A100, running Android version 3.2. Both of the Acer tablets are planned to be upgraded to Ice
Cream Sandwich at some point.

•	 ASUS Eee Pad Transformer TF101: This is 10.1-inch tablet with the same processor and RAM
as the Acer tablets; it runs Android version 3.2 and is upgradable to Ice Cream Sandwich.

•	 Google Nexus S: This is a phone made by Samsung for Google. This device runs a single-core
1 GHz Arm Cortex-A8 with 512 MB of RAM, running Android version 2.3 and upgradable to Ice
Cream Sandwich. This device is a Google development phone providing great support for new
APIs and developments.

•	 Google Galaxy Nexus: This is also a Google development phone made by Samsung. It uses a
dual-core 1 GHz Cortex-A9 with 1 GB of RAM and the Ice Cream Sandwich version of Android.

•	 LG Optimus Pad: This is an 8.9-inch tablet with a dual-core 1 GHz Cortex-A9 with 1 GB of RAM
running Android version 3.0.

•	 Motorola Xoom: This is a 10.1-inch tablet with a dual-core 1 GHz NVIDIA Tegra 2 with 1 GB of
RAM running Android version 3.0.

•	 Samsung Galaxy Tab 10.1: This is a 10.1-inch tablet with a dual-core 1 GHz NVIDIA Tegra 2
with 1 GB of RAM running Android version 3.1.

•	 Samsung Galaxy S: This is a phone with a single-core 1 GHz Arm Cortex-A8 with 512 MB of
RAM. This device can be factory-upgraded to Android 2.3 to work with the ADK.

•	 Samsung Galaxy Ace: This is a phone with an 800 MHz ARM 11 and 278 MB of RAM running
Android version 2.3.

Chapter 4 ■ android adK

65

Modding
The devices branded by Google are the better choice for heavy development. There are many devices that can be
made to work with the ADK, but may require modding, also known as rooting. Modding is a great way to achieve
extra functionality in an Android device. Modding is not without risks—for example, so-called bricking, voiding of
warranties, and the possibility of devices becoming unstable are the biggest problems.

If you decide to modify a device, do a sufficient amount of research and weigh the risks and cost before
proceeding. If you’re unsure about mods, either don’t do them or consult someone who has.

This chapter was developed with a Barnes and Noble NOOK Color running both CyanogenMod 7 (Android 2.3)
and CyanogenMod 9 (Android 4.0), dual-boot from the SD card. CyanogenMod is an aftermarket Android distribution
providing custom ROM for a variety of devices. You can find more information about it at the CyanogenMod web
site (www.cyanogenmod.com). CyanogenMod is developed by the community and has a lot of support, and is one of
the more popular aftermarket Android distributions. You can find great resources for modding and development of
Android systems at the XDA Developers forums (www.xda-developers.com).

I chose the NOOK Color as a development platform because of the cost, ease of modification, and decent
hardware specifications. CyanogenMod 7 for this device had to have a custom kernel compiled with the configure
flag CONFIG_USB_ANDROID_ACCESSORY set during the compile, and the usb.jar libraries added to the system.
CyanogenMod 9 for the NOOK Color can be installed on an 8 GB microSD card and booted—just like having multiple
bootable devices on a normal PC. You don’t need a NOOK Color for the examples in this chapter, although you will
need an Android device capable of using the ADK protocols.

Arduino IDE Setup
This chapter will provide an introduction to building a classic Hello World hardware example with an Android twist.
An Android device and an Arduino Mega ADK are needed for the rest of this chapter. Before any programming can
be done, the Android and Arduino environments need to be set up. The Arduino 1.0 IDE (or later) should already be
available, but a library is needed to work with the ADK protocol. The appropriate library is available from the Arduino
labs web site (http://labs.arduino.cc/uploads/ADK/GettingStarted/ArduinoADK-beta-001.zip).

Contained in the ZIP file are files for Processing and Arduino; you can ignore the Processing folder. In the
Arduino folder are two versions of the library. Extract the folder named UsbHost and the files located in the libraries
folder to the libraries folder for the Arduino IDE. Start or restart the Arduino IDE, finishing the installation of the
new library. Under File ➤ Examples ➤ UsbHost, examples should now be available. Open the first example and verify
that it can compile. Once finished, the Arduino IDE will be ready to program ADK applications.

You need to set up a development environment to write the Android code and make the installation packages.
Both Processing (http://processing.org) and Eclipse (http://eclipse.org) can create Android applications.
Programming in Processing is similar to programming Arduino code, but lacks some finesse and control. This chapter
focuses on the Eclipse IDE, which provides greater functionality but is a bit cumbersome. When using Eclipse for
Android development, you need to understand two different styles of code: the main Java-related portion and XML.
The Java-styled code is the grunt of any Android application and is the main programming language; XML is the
fluff that defines the layout, objects, and text that gets displayed. I’ll describe the programming methodologies for
application development a bit later in the chapter. If this is your first introduction to Android development, check out
Wallace Jackson’s Android Apps for Absolute Beginners (Apress, 2011).

Installing the Eclipse IDE is fairly straightforward. For best results, follow the instructions on the Android
Developers web site for your specific system (http://developer.android.com/sdk/installing.html). The
complicated part of the setup is making sure that the ADB functions properly; this may actuality require that you have
root access and that you turn on USB debugging in the device settings. To check if the ADB is working, in a command
prompt change to the platform-tools directory and run the command adb, and the command’s help should be
printed to the screen. If the command does not run from any other directory, check to see if the SDK’s installation
directory has been added to the environment variables.

http://www.cyanogenmod.com
http://www.xda-developers.com
http://labs.arduino.cc/uploads/ADK/GettingStarted/ArduinoADK-beta-001.zip
http://processing.org
http://eclipse.org
http://developer.android.com/sdk/installing.html

Chapter 4 ■ android adK

66

Once the help is displayed plug the intended device for development into the computer, and run the command
adb devices to print a list of connected devices. If no device shows up, USB debugging might be turned off or root
accesses might be needed. The ADB is not necessary for loading applications on the device, but it is helpful to be able
to have the application automatically uploaded to the device from Eclipse when in development stages. If the ADB is
not available, the application’s APK file has to be manually installed on the system. For each change, a file manager
will have to be installed from the market, and the system has to allow for untrusted sources. You can set this in the
Manage Applications section in the systems settings. Eclipse has the ability to run emulators and use actual hardware
for debugging. It is helpful if the ADB is available to run an application called ADB Wireless, available from the apps
market. Note that this app requires root access. Running the ADB over a wireless network allows for the Arduino Mega
ADK to be constantly attached to the Android device and the computer during developments.

Android Application Creation
After the Eclipse IDE is set up, you’ll create a new Android project from the New Project wizard in Eclipse.

1. Choose File ➤ New ➤ Project, and then select Android Application Project in the Android
folder within the wizard selector, as shown in Figure 4-1.

Figure 4-1. Eclipse’s New Project dialog

Chapter 4 ■ android adK

67

The next prompt (see Figure 4-2) requires an application name, project name, package name, and
declaration of the Android SDK version.

Figure 4-2. The New Android App dialog

2. Enter ADK blink as the application name for this chapter.

3. Name the project CH4Examples.

4. Name the package CH4.example.proarduino. The package name is a triplet descriptor that
defines a base Java package that will be the program’s entry point. The application name,
project name, and package name can be set to anything for later projects and should be
set in the wizard when creating projects; note that once you’ve created these names for a
project, it is difficult to change them later on.

5. Next, you’ll set which API level to use. Select Google APIs for the 2.3.3 platform, API
version 10. The API sets the minimum version of Android that the application will work
on, API version 10 will work on future Android releases. Do not use Android X.X.X, where
X.X.X is the target version of Android, when developing ADK applications. Only the Google
APIs have the required support for the ADK.

6. You can also choose to create a custom logo for the application. For now, though, deselect
the “Create custom launcher icon” option. If the option is selected, you will be given an
additional set of prompts for setting the application logo.

7. Finally, leave the “Mark this project as a library” and “Create Project in Workspace”
options at their defaults, and then click Next.

Chapter 4 ■ android adK

68

8. On the next page of the wizard, you’ll select options for the type of activity to create
(see Figure 4-3). The activity is the main form of user interaction. Not all Android apps
need an activity to run, and different API levels give different options. The only one
that can be used for the project’s current API is BlankActivity, so choose that, and then
click Next.

Figure 4-3. Activity-creation options

9. Finally, you’ll set some of the names for some of the project’s internal files (see Figure 4-4).
Make sure that the names in the Activity Name and Title fields match those of the project’s
name, followed by Activity (e.g., CH4ExamplesActivity). For this exercise, change the
layout name to main. The layout name describes the first user interface that the program
will use by default. You can leave Navigation Type at the default of “None,” since this is
going to be a stand-alone application and does not require a parent program. For more
advanced applications, you can change this to accommodate different user interactions,
such as tabbed navigation.

Chapter 4 ■ android adK

69

When you click Finish, the wizard creates an autogenerated Hello World project and a *.apk file; these form the
framework for the rest of the examples in this chapter. If this is the first time an Android application is being set up,
there may be a need for the wizard to automatically download some extra software components.

If the ADB is set up and the device is available, you can load the basic app and start it on an Android device by
clicking on the Play button on the toolbar, selecting Run from the Run menu, or pressing Ctrl+F11. When the project is
initiated for the first time, Eclipse will ask how to run the application. Make sure to select “Android application” from
the options. After you have selected the Run As options, you need to select the device to run; if the ADB is working
and the device is connected an option will be shown to choose a running Android device. You can create an Android
Virtual Device (AVD) to test running an application if a physical device is not plugged in or one is simply not available.
Note that the AVD is not capable of testing ADK functionality, because of a USB host conflict.

The next section focuses on the Arduino and preparing to communicate with the ADK before building the actual
Android app.

Note■ if you’re not running the adB, you can copy the .apk file to an android device from the workspace project
name/bin folder and install it by running .apk from the android device.

The Arduino Sketch
Working with the ADK with the Arduino is similar to working with software serial, in that a header needs to be included,
an object declared, and that object started. The library that was added to the Arduino’s IDE provides a clean method
of declaring and initializing the host connection when compared to other libraries that are available, and is based

Figure 4-4. Activity name and layout options

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4 ■ android adK

70

on the Circuits@Home libraries. The header that needs to be included is AndroidAccessory.h. The object is of type
AndroidAccessory and can be named anything; it has some information that is declared upon object creation. The data
that is declared when the AndroidAccessory object is created is for identification to any Android device that the board is
connected to, thus registering the Arduino to a particular application. The data is enclosed in parentheses and separated
by commas after the object’s name. The declared data is ordered and defined as manufacturer, model, description,
version, Uniform Resource Identifier (URI), and serial. The data is represented as a character string and can be any
reasonable number of printable characters. It’s always available to the connected Android device. The manufacturer,
model, and version are used to identify the accessory to a program on the Android device. The rest of declaration
information can be used for tracking and debugging reports in applications for widespread or commercial use.

The accessory is started the same way as software serial: by calling name.begin in the setup function of the
Arduino sketch. The object’s public functions—available, write, peek, and flush—perform the same work as
their serial or software-serial counterparts, along with print and println. There are two other functions to note
when working with the AndroidAccessory library. One is isConnected, which returns a Boolean for the status of
the connection between Arduino and Android. The last added function is refresh; it’s used to reset and reinitialize
the connection between the two devices after the devices have been reconnected. If the Arduino code checks for a
connection from the isConnected function, it will also call refresh to try to reestablish the connection every time
isConnected called. The use of refresh or an isConnected check in the Arduino code’s main loop creates the ability
to connect devices without having to power-cycle or rest the Arduino.

The first example sets up an LED to change state on the Arduino when a virtual button on the Android device
is pressed. The Arduino is set up as per Figure 4-5, with an optional LED connected to Arduino pin 13. The code
accomplishes the state change by receiving a 1 to turn on the LED and any other byte value from the Android device to
turn it off. The code also implements the refresh function to allow for reconnecting the two devices without resetting
the Arduino.

Figure 4-5. Arduino-to-Android configuration

Chapter 4 ■ android adK

71

Note ■ the host port on the arduino Mega adK provides some power to signify a live connection to the android device;
however, it is not capable of providing a charge. as such, extra circuitry is needed to introduce enough power to charge a
connected device.

Connect the Arduino as in the preceding figure; it needs to be connected to the computer for programming,
and then later to the Android via a micro USB-to-USB A cable after the Android application has been completed.
Step through Listing 4-1 and upload the code to the Mega ADK board, remembering to switch the board type. To
select the board type in the Arduino IDE, choose Tools ➤ Board ➤ Arduino Mega 2560 or Mega ADK. In conjunction
with the connection between Android and the Arduino, the code also sets up a serial connection to the computer for
debugging purposes at a baud rate of 115200. The code will print ready to the serial port when the setup function has
finished, and other debugging information will be printed when the code is connected to a working application later.

Listing 4-1. Arduino Code for Connecting to an Android Application

#include <AndroidAccessory.h> // needed library to work with ADK connections
// initialize the accessory object with identifying data
AndroidAccessory ADK("Manufacturer", "Model", "Description",
 "1.0", "Pro Arduino", "0000000012345678");
void setup() {
 Serial.begin(115200);
 ADK.begin(); // start the connection to the Android
 pinMode(13, OUTPUT);
 Serial.print("ready"); } // end setup
void loop() {
 if (ADK .isConnected()) { // check for live connection
 if (ADK.available() > 0){ // check for incoming data
 Serial.println(ADK .peek()); // print incoming data for visible inspection
 if (ADK.read() == 1) // pin HIGH for an incoming value of 1
 // everything else pin is low
 digitalWrite(13 , HIGH);
 else
 digitalWrite(13 , LOW);
 } // end if (ADK .available() > 0)
 } // end if (ADK .isConnected())
} // end void loop()

The Android ADK Application
Programming apps for Android can be an involved process, especially for widespread or commercial programs.
This section provides a crash course in the development of Android applications; some of the ADK code is based on
work from AllAboutEE (http://allaboutee.com). The focus is getting Arduinos to communicate with the Android
devices—note that some of the fundamentals of Java and some advanced features of Android application programming
may be glossed over. The hardest part for some when deciding to start writing applications for Android is the change
in languages—Arduinos are coded in C++ and Android is developed in Java. For others, the event-driven GUI
development might be a new experience. Chapter 3 introduced some of the concepts of event-driven applications and
working with two different code structures. Aside from Java, Android also introduces XML resources; XML is another
code language that is necessary when developing Android applications. Four different XML files are used when

http://allaboutee.com

Chapter 4 ■ android adK

72

working with Android code; three are automatically generated during project generation: main.xml, strings.xml, and
AndroidManifest.xml; the fourth, accessory_filter.xml, is not. The following list describes these four files:

•	 main.xml contains the layout for an application’s first screen. The file contains descriptors
for onscreen object layout, type, and identification. Eclipse has a built-in graphical tool for
choosing and placing objects, and gives you the ability to view the XML. The main.xml file is
located in the workspace of the project, in the res/layout/main.xml folder.

•	 strings.xml is used to define static information in the form of character strings. This file
can be used to define information from many different attributes, such as object names,
information for text fields, and file locations. This file is not absolutely necessary for small
applications being developed, but note that Eclipse will throw a warning when strings are
hard coded. Using strings.xml is good programming practice and is useful for when multiple
instances of data are used throughout an application, providing a single place to update
instead of requiring that every occurrence in the code be changed. The strings.xml file is
located in the workspace of the project, in the res/values/strings.xml folder.

•	 AndroidManifest.xml defines what package and activity need to start when the application
is launched, the type of the application, what system events are responded to, and some
miscellaneous information for the Android device, along with the icons to be used.
AndroidManifest.xml is similar to a main function in C or C++; this is where the application
enters and starts. Android uses intent filters that are checked when a system event occurs,
and if the filter in the file matches the event, the application can be started (e.g., when a call
is received, an application is run for the user). The AndroidManifest.xml file is located in the
workspace root.

The •	 accessory_filter.xml file needs to be created by the programmer and is used when
AndroidManifest.xml responds when accessories are attached. The data in this file is
compared to the created data in the Arduino sketch when a connection is getting established.
To create this file, you need to create a folder in the workspace’s res folder named xml and add
a new file to this folder, named accessory_filter.xml.

Note ■ Before you insert the code from the listings in this chapter, you need to delete the styles.xml file and the
menus folder from the res folder and the project’s workspace.

The application framework and workspace were already created for this example when the Hello World
application was created to test the functionality of the development environment. Step through the code in the
examples following and compare to the code generated to get a feel for how everything is structured, and then
replace the code in the workspace project with the appropriate example code.

Note ■ eclipse with the android SdK is sometimes a bit temperamental; errors that report that R.* is not capable of
resolving are caused by the R.java not being generated. try a clean and rebuild the project after checking for errors in
the XML files. try ctrl + shift + o to organize imports and select the activity if clean and rebuild doesn't work.

Chapter 4 ■ android adK

73

AndroidManifest.xml
The manifest file is the best place to start when developing applications, because it is the entry point for every Android
application. The manifest is fairly consistent between applications and can be reused with minor changes across
many different applications. The first line defines the XML version and the encoding, and will be the same in all the
XML files. The tags following define the systems resources, package name, versions, main icon, application name,
and activity to be used in the application. The package name has to match that of the first Java container that contains
the code for the project to tell the operating system where to look, and the activity name has to match that of the first
activity that will be run. Also, the entry point to an app is the constructor for the main activity class. The rest of the
manifest file defines what needs to be done when the application is started either by the user or a system event, as well
as any extra libraries on the system that the application needs.

This application is an activity-based program and has a user interface when started (alternatively, applications
can be started as a process to run in the background and can have no user interface). Replace the original
AndroidManifest.xml file with Listing 4-2; to make things easier, make sure that the package attribute and
<activity> tag match those of the original code generated.

Listing 4-2. AndroidManifest.xml Replacing the Autogenerated Original

<?xml version="1.0" encoding="utf-8"?>
<!-- define entry package name, name space and code version -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="CH4.example.proArduino" android:versionCode="1"
 android:versionName="1.0">
 <!-- define minimum usable android version-->
 <uses-sdk android:minSdkVersion="10"/>
 <!-- application's definitions icons, name and entry activity -->
 <application android:icon="@drawable/ic_launcher" android:label="@string/app_name">
 <!-- activity to be launched when program starts -->
 <activity android:name=".CH4ExamplesActivity" android:label="@string/app_name">
 <!-- define events that this app responds to -->
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <!-- respond when attaching accessories -->
 <intent-filter>
 <action android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED" />
 </intent-filter>
 <!-- use listed file to determine if accessory is for this application -->
 <meta-data android:name="android.hardware.usb.action.USB_ACCESSORY_ATTACHED"
 android:resource="@xml/accessory_filter" />
 </activity>
 <!-- ADK programs need this library -->
 <uses-library android:name="com.android.future.usb.accessory"></uses-library>
 </application>
</manifest>
<!-- end of AndroidManifest.xml -->

http://schemas.android.com/apk/res/android

Chapter 4 ■ android adK

74

res/xml/accessory_filter.xml
The accessory_filter.xml file is created in a folder that is added after program creation in the workspace location
res/xml. The information contained in this file is used by the manifest to load values for comparison into variables
used by the main program when an accessory is detected and determines if the accessory belongs to the program. The
code uses the manufacturer, model number, and version to detect a match. The description, URI, and serial number
can be accessible to the program, but are not needed here. This file changes the accessory that the code will respond
to upon a system event. The manifest and this file remain fairly consistent, although there are minor changes between
programs that have user interaction and utilize ADK accessories. Listing 4-3 shows this file for our app.

Listing 4-3. accessory_filter.xml

<?xml version="1.0" encoding="UTF-8"?>
<resources>
 <!-- match to Arduino sketch's accessory declaration object -->
 <usb-accessory manufacturer="Manufacturer" model="Model" version="1.0" />
</resources>
<!-- end of accessory-filter.xml -->

res/layout/main.xml
This is the first file of the Android application that is different from one program to another, because this file defines
the user interface. There can be multiple layout files in an Android application containing different objects to display
information or receive interaction from the user. This file’s initial section creates the layout area with specifications
on how much of the device’s screen is used. Following the layout area definition are tags for defining an object’s ID,
placement, and size, and the function to use when a user interface object is manipulated, either from the user or code.

There is a plethora of defining parameters for each object, such as the ability to define what function to run in the
Java code when a button is pressed. The tag for the toggle button used in this example demonstrates implementing
a called function; when the toggle button is pressed, a blinkLED function is called in the Java code. Eclipse has the
ability to graphically lay out objects for the application and generates the required XML needed. Look over and
compare the Listing 4-4 to the generated XML for main.xml and replace it.

Listing 4-4. main.xml Replacing the Autogenerated Original

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/relativeLayout1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="0.72" >
 <ToggleButton
 android:id="@+id/toggleButtonLED"
 android:layout_width="200dp"
 android:layout_height="100dp"
 android:layout_centerInParent="true"
 android:layout_marginTop="89dp"
 android:onClick="blinkLED"
 android:text="@string/ToggleButton"
 android:textSize="50dp" />
</RelativeLayout>
<!-- end of main.xml -->

http://schemas.android.com/apk/res/android

Chapter 4 ■ android adK

75

res/values/strings.xml
The strings.xml file is a container for reusable data such as button and application names. The strings are static,
but could be uses throughout the program. It is good programming practice to define the strings in this file instead
of hard-coding them into other locations. In the manifest @string/app_name and @string/ToggleButton are used as
static variable containers, as shown in Listing 4-5. It is possible to replace the variable with the actual string value to
save on code length, but it is not recommended.

Listing 4-5. strings.xml Replacing the Autogenerated Original

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Mega ADK</string>
 <string name="ToggleButton">ToggleButton</string>
</resources>
<!-- end of strings.xml -->

src/CH4.example.proArduino/CH4ExamplesActivity.java
Here is the heart and soul of an Android app. Listing 4-6 is broken up in to seven parts to help explain everything
that goes into the Java portion of Android applications. Listing 4-6 code appears in order of placement in the
CH4ExamplesActivity.java file and makes up the complete file located in the workspace under src/ch4.example.
proArduino. Most of the code for this example starts the basic framework to send data to the accessory board. Parts
3 through 6 are set up to be reusable. After we’ve finished this example, we’ll set up a framework to perform two-way
communications that you can use in any project by changing the activity class and the package name. Aside from
the project name, package name, activity name, and accessory definition, manifest.xml, accessory_filter.xml,
and Listing 4-6 remain relatively unchanged for new projects. Part 7 of Listing 4-6 is where you will change the code
between projects.

Part 1, line 1 of Listing 4-6 describes the package that the Java file belongs to. This is also the entry package that
was defined in the manifest file. The rest of the file imports needed functions and classes for the rest of the program.
Imports are mostly equivalent to C/C++ #include statements and inform the code what classes are needed. USB
communication is handled through a file, so the Java I/O file handlers need to be imported, but not all of the I/O
library classes are needed and only a subset of the classes are imported. The same is true for the android.*
libraries—only the ones that are actually needed are imported. It is possible to import every class in a library at once
with a wildcard character (*), as is done with the com.android.future.usb.* libraries. When adding objects to
the user interface, each object type will need to be imported from widgets in the same fashion as the toggle button.

Listing 4-6. CH4ExamplesActivity.java, Part 1 of 7

package ch4.example.proArduino;
 import java.io.FileDescriptor;
 import java.io.FileInputStream;
 import java.io.FileOutputStream;
 import java.io.IOException;

 // Android components
 import android.app.Activity;
 import android.app.PendingIntent;
 import android.content.BroadcastReceiver;
 import android.content.Context;
 import android.content.Intent;

Chapter 4 ■ android adK

76

 import android.content.IntentFilter;
 import android.os.Bundle;
 import android.os.ParcelFileDescriptor;
 import android.util.Log;
 import com.android.future.usb.*;

 // UI components
 import android.view.View;
 import android.widget.ToggleButton;

Part 2 of the code starts the new class activity and inherits functionality from the parent class of the activity by
extending the original class’s functionality. This part also creates the object variable needed by the rest of the code
to set up the ADK functionality, and create containers to hold user interface object registrations and debugging tags.
Debugging tags are used to show what program sent a flag to the ADB. A function named Log sends the flag to the
ADB as a string and can be read by issuing the command adb logcat in a command terminal on computer connected
to the Android device when the ADB is available.

Listing 4-6. CH4ExamplesActivity.java, Part 2 of 7

public class CH4ExamplesActivity extends Activity {
 // ADK input and output declaration
 UsbAccessory ARDUINO_ADK; // the Accessory object
 ParcelFileDescriptor ADKstreamObj;
 FileInputStream ReciveFromADK;
 FileOutputStream SendtoADK;

 // setup and logging
 private static final String ACTION_USB_PERMISSION = "MEGA_ADK.USB_PERMISSION";
 private static final String TAG = "MEGA ADK"; // debug tag sent Log
 private UsbManager UsbManagerOBJ;
 private PendingIntent Needed_Permission;
 private boolean IsPermissionNeeded;

 // UI components
 private ToggleButton buttonLED;

Part 3 is a collection of functions used for program handling. The constructor and destructor are defined in
this section along with definitions of how to handle the program when paused and resumed. These functions are
overridden from the originals contained in the original activity class so that the extra functionality of the ADK protocol
can be added.

The @Override lines tell the program that the function below is different from the function that is defined in
the parent class; however, by using super.functionName we make sure that the parent’s function is also called in
the new code. In the onCreate function, the accessory is set up, the main view is registered to the program, and the
user interface objects are linked. Because of the differences in the user interface layout between different projects, a
registerUIobjects function has been created to contain and handle these differences.

Listing 4-6. CH4ExamplesActivity.java, Part 3 of 7

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setupAccessory();

Chapter 4 ■ android adK

77

 setContentView(R.layout.main);
 registerUIobjects();
} // end onCreate

@Override
public void onDestroy() {
 unregisterReceiver(ADKReceiver);
 super.onDestroy();
} // end onDestroy

@Override
public void onPause() {
 super.onPause();
 closeAccessory();
} // end onPause()

@Override
public void onResume() {
 super.onResume();
 if (ReciveFromADK != null && SendtoADK != null) {
 return;
 } // end if (ReciveFromADK != ...
 UsbAccessory[] accessories = UsbManagerOBJ.getAccessoryList();
 UsbAccessory accessory = (accessories == null ? null : accessories[0]);
 if (accessory != null) {
 if (UsbManagerOBJ.hasPermission(accessory)) {
 openAccessory(accessory);
 } // end if (UsbManagerOBJ.hasPermission(accessory))
 else {
 synchronized (ADKReceiver) {
 if (IsPermissionNeeded == true) {
 UsbManagerOBJ.requestPermission(accessory, Needed_Permission);
 IsPermissionNeeded = false;
 } // end if (IsPermissionNeeded == true)
 } // end synchronized ADKReceiverr)
 } // end else for if (UsbManagerOBJ...
 } // end if (accessory != null)
 else {
 Log.d(TAG, "mAccessory is null");
 } // end else if (accessory != null)
} // end onResume()

Part 4 handles the programs auto-start functionality and the request of permissions when the application is
started. When a device is plugged in, this code receives information from the operating system’s event broadcast and
will ask the user to grant permission to use the application with the accessory. If the program is started by the user and
not by a system event, the permission is assumed.

Chapter 4 ■ android adK

78

Listing 4-6. CH4ExamplesActivity.java, Part 4 of 7

private BroadcastReceiver ADKReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if (ACTION_USB_PERMISSION.equals(action) == true) {
 synchronized (this) {
 UsbAccessory accessory = UsbManager.getAccessory(intent);
 if (intent.getBooleanExtra(UsbManager.EXTRA_PERMISSION_GRANTED, false)) {
 openAccessory(accessory);
 }
 else {
 Log.d(TAG, "permission denied for accessory "+ accessory);
 }
 IsPermissionNeeded = true;
 } // end synchronized (this)
 } // end if (ACTION_USB_PERMISSION.equals...
 else if (UsbManager.ACTION_USB_ACCESSORY_DETACHED.equals(action)) {
 UsbAccessory accessory = UsbManager.getAccessory(intent);
 if (accessory != null && accessory.equals(ARDUINO_ADK)) {
 closeAccessory();
 }
 } // end else if (UsbManager...
 } // end void onReceive(Context contex ...
}; // end private BroadcastReceiver..

@Override
public Object onRetainNonConfigurationInstance() {
 if (ARDUINO_ADK != null) {
 return ARDUINO_ADK;
 }
 else {
 return super.onRetainNonConfigurationInstance();
 }
} // end public Object onRetainNon*...

Part 5 sets up the accessory to be used and handled by the program with the registration of the accessory object
and the I/O streams. This section defines what needs to be done when opening and closing the accessory.

Listing 4-6. CH4ExamplesActivity.java, Part 5 of 7

private void openAccessory(UsbAccessory accessory) {
 ADKstreamObj = UsbManagerOBJ.openAccessory(accessory);
 if (ADKstreamObj != null) {
 ARDUINO_ADK = accessory;
 FileDescriptor fd = ADKstreamObj.getFileDescriptor();
 ReciveFromADK = new FileInputStream(fd);
 SendtoADK = new FileOutputStream(fd);
 Log.d(TAG, "accessory opened");
 } // end if (ADKstreamObj

Chapter 4 ■ android adK

79

 else {
 Log.d(TAG, "accessory open fail");
 }
} // end void openAccessory...
private void setupAccessory() {
 UsbManagerOBJ = UsbManager.getInstance(this);
 Needed_Permission = PendingIntent.getBroadcast(this, 0, new Intent(ACTION_USB_PERMISSION), 0);
 IntentFilter filter = new IntentFilter(ACTION_USB_PERMISSION);
 filter.addAction(UsbManager.ACTION_USB_ACCESSORY_DETACHED);
 registerReceiver(ADKReceiver, filter);
 if (getLastNonConfigurationInstance() != null) {
 ARDUINO_ADK = (UsbAccessory) getLastNonConfigurationInstance();
 openAccessory(ARDUINO_ADK);
 }
} // end private void setupAccessory()
private void closeAccessory() {
 try {
 if (ADKstreamObj != null) {
 ADKstreamObj.close();
 }
 }// end try
 catch (IOException e) {
 Log.e(TAG, "IO Exception", e);
 }
 finally {
 ADKstreamObj = null;
 ARDUINO_ADK = null;
 } // end of all try catch finally
} // end private void closeAccessory()

Part 6 contains a function that writes data to the output file stream that can be read by the Mega ADK board’s
programming. For this example, only the output direction has been created. The write function accepts an array of bytes of
any size and will send all the bytes contained in the array; there is no need to define an amount—the whole array is sent.

Listing 4-6. CH4ExamplesActivity.java, Part 6 of 7

private void write(byte[] send){
 if (SendtoADK != null) {
 try {
 SendtoADK.write(send);
 }
 catch (IOException e){
 Log.e(TAG, "write failed", e);
 }
 }// end if (SendtoADK != null)
}// end private void write...

Part 7 is where the code performs functions based upon user interaction and later actions performed by the
Mega ADK. For the program to be able to interact with user interface objects (such as showing dynamic information
or reading object information), the objects need to be registered. The registerUIobjects function is responsible for
the registration; it finds the ID of the desired object and sets it to the variable created in the beginning of the class.
The variable is not defined in the function because other functions will need to use the objects.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4 ■ android adK

80

The blinkLED function is run every time the toggle button is pressed. This function creates an array of 1 byte that
is set based upon what state the toggle button is in. The toggle button’s state is handled by the widget class, so code
does not need to be added. Once the array value is set, the write function is called to send the byte to the Arduino.
Any number of buttons can be created to send any amount of data (for example, to create a directional pad to use an
Android device as a robot controller).

Listing 4-6. CH4ExamplesActivity.java, Part 7 of 7

private void registerUIobjects(){
 buttonLED = (ToggleButton) findViewById(R.id.toggleButtonLED);
}

public void blinkLED(View v) {
 byte[] BytestoSend = new byte[1];
 if (buttonLED.isChecked())
 BytestoSend[0] = (byte) 1; // button shows current LED State "ON"
 else
 BytestoSend[0] = (byte) 0; // button shows current LED State "OFF"
 write(BytestoSend); // sends the byte to the ADK
} // end void blinkLED(View v)
} // end public class CH4ExamplesActivity

Verifying the Code
Now that both parts of the example are complete, the Mega ADK board should already have the sketch from Listing 4-1
installed. The code for the Android needs to be installed on a supporting device. You can accomplish this by running
the application from the Eclipse IDE with the Android device connected via the ADB or by manually installing it from the
.apk file located in the bin folder of the workspace/project name folder. When the application is installed on
the Android device, make sure that it can run; it will automatically start if the program was installed by Eclipse. The
program will have a single button centered on the screen; the button will be in the off state.

Close the program for now and plug the Mega ADK into the computer to power the board. For debugging on
the Arduino side, start the serial monitor at 115200 baud. After the Arduino is powered on, plug the Android device
into the host side with the appropriate USB cable (in most circumstances, the cable used to charge the device will
work). If all is working, a pop-up should appear on the Android screen asking for permission to start the application
shortly after the board is plugged in. If the pop-up does not appear, try pressing the reset button on the Arduino or
reconnecting the USB cable to the Android device.

Once the program is running, the toggle button should now be able to turn the LED off and on over the USB
connection. The serial monitor should have printed the connection initiation and should echo a 1 or 0 every time the
toggle button is pressed. If the ADB is available over wireless, type adb logcat into a terminal and check the printing
log for mentions of the MEGA_ADK program.

Note ■ if using completed android project from apress check that the Build target is Googleapis api level 10 located in
project ➤ properties ➤ android ➤ Build target.

Completing the Framework
Now that Arduino and Android have been introduced to each other, the next example expands on the code from last
example. The next example uses the same project and introduces the handling of two-way communication by creating
an ADK monitor with similar functionality to the serial monitor included with the Arduino IDE.

Chapter 4 ■ android adK

81

The ability to send data is already complete and handled by the write function. The ability to receive data is not as
straightforward. Because the code is event driven and normally responds to user interaction, a type of continuous loop
needs to be created that does not interfere with the rest of the program. This is accomplished by implementing a thread
that will listen to the incoming file stream for new data and call a function so that the data can be worked with.
To implement a thread, we need to create and start a Runnable class, so add implements Runnable to the end of the
activity declaration just before the starting curly brace and after extends Activity making the class declaration read as.

public class CH4ExamplesActivity extends Activity implements Runnable {

The thread needs to be created and started. This is done in the openAccessory function located in part 5
Listing 4-6. The two lines of code in Listing 4-7 are placed between the following existing lines:

SendtoADK = new FileOutputStream(fd);
Log.d(TAG, "accessory opened");

The new lines of code will start a function named run in the current class every time the openAccessory function
is executed.

Listing 4-7. New Lines for the openAccessory Function

Thread ADKreadthread = new Thread(null, this, "ADK_Read_Thread");
ADKreadthread.start();

The run function needs to be defined within the class and can be added below the write function of part 6
Listing 4-6. The functions must be named run because of the abstraction from the runnable class. The new function
is as described in Listing 4-8. The function normally would execute once and end as a separate thread from the
original program. In this case, it needs to run in a continuous loop, so we create a while (true) loop. Under normal
circumstances, once a loop of this nature is encountered, the rest of the program cannot continue to function until
the loop is finished. However, this loop is in a separate place and acts as a different program from the main program,
and allows for the rest of the code to execute as normal. This function constantly monitors the ReceiveFromADK data
stream for new information, places the data in a new data class, and informs a function that there is new data ready to
be handled by the main program.

Listing 4-8. New Function to Constantly Check for New Incoming Data

public void run() {
int RevivedBytes = 0;
 while (true) { // run constantly
 byte[] buffer = new byte[80]; // max size capable is 16384 but slows the program down
 try {
 RevivedBytes = ReciveFromADK.read(buffer);
 }
 catch (IOException e) {
 Log.e(TAG, "Read failed", e);
 break;
 }
 if (RevivedBytes >= 1) {
 Message MakeBufferTransferable = Message.obtain(IncomingDataHandler);
 MakeBufferTransferable.obj = new BufferData(buffer ,RevivedBytes);
 IncomingDataHandler.sendMessage(MakeBufferTransferable);
 }
 }// end while
}// end public void run()

Chapter 4 ■ android adK

82

 A new data class has to be created to efficiently pass information from the thread to a receiving function.
The class is created outside of the current Java file but still within the same package. Right-click the package name
ch4.example.proArduino and select a new file to bring up a wizard, and enter the name BufferData.java for the
newly created file. This new file will contain the BufferData class called by run and used for a data handler. The class
declares two variables and has three functions; the variables are for the buffer and the amount of revived bytes. The
first function takes both values in at once and stores them in the appropriate variable. The next two functions will
return one of the two variables depending on the functions called. The class is outlined in Listing 4-9 because this file
is part of the same package—the class does not need to be imported.

Listing 4-9. Buffer Data Container Class

package ch4.example.proArduino;
 public class BufferData {
 private byte[] Buffer;
 private int length;
 public BufferData (byte[] Buffer , int length) {
 this.Buffer = Buffer; // set data to variables
 this.length = length;
 }
 public byte[] getBuffer() {
 return Buffer; // set data out
 }
 public int getLength(){
 return length; // set data out
 }
 }// end BufferData

The last thing needed to complete the framework for use in this application or other applications is a handler. This
mechanism allows the rest of the program to work with the incoming data. The handler is included via an Android class
and needs to be imported along with a message class so that run can notify the main program of changes. The Listing 4-10
shows the two import lines that need to be added to the import section at the beginning of the file.

Listing 4-10. Two New Lines for the Import Section

 import android.os.Handler;
 import android.os.Message;

For convenience, the function to be created in Listing 4-11 that uses the two new classes will be placed toward
the end of the main file, or what was part 7 in Listing 4-6, just after the registerUIobjects function. The placement
is important because the handler function is heavily modified between different projects. This function is
wrapped inside of a class of type Handler and overrides the original class function of handleMessage. The original
functionality of handleMessage is not needed and not included with a call to super.<functions name>. The function
handleMessage links the data sent from run to a new BufferData object. At this point, the framework is complete and
ready for the development of the rest of the program. To prep the data for the user, the code converts the BufferData
to a string and appends the string to an editText widget for display.

Listing 4-11. The Last Part of the Framework

Handler IncomingDataHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 BufferData IncomingBuffer = (BufferData) msg.obj;
 // after this point the data is available for manipulation
 String str = new String(IncomingBuffer.getBuffer());

Chapter 4 ■ android adK

83

 DataFromArduino.append(str);
 }// end handleMessage(Message msg)
}; // end Handler IncomingDataHandler = new Handler()

Completing the Application
Now that the framework is complete, the rest of this section focuses on the creation of a serial monitor replica for use
with the ADK protocol. The best place to start is with the user interface to get a feel for how the interaction will work,
and at the same time prepare the resources to link to the Java portion of the application. The Arduino IDE has a serial
monitor for ease of development; it is capable of printing any information at specified points in the code, and it is
also capable of sending data to the Arduino. The application for the ADK side has to mimic the same functionality as
the serial monitor. Two different text boxes are used: one for incoming data and one for outgoing; a single button is
used to send the data from the outgoing text box. At bare minimum, three objects are needed to create the same user
interface experience: two Android EditText boxes for the data and a regular button to send. To add a little extra flair,
the program includes a second button for clearing the data in the user interface.

Figure 4-6 shows what user interface layout was chosen for this application. The send and clear buttons are
at the bottom right, the input box it placed next to them at the bottom left, and the rest of the screen is filled with
the data-revived box. For simplicity, the autoscroll is not implemented along with the line-ending options or the
baud select. The TextEdit boxes automatically wrap the characters to a new line when used in a multiple-line
configuration, as is need for the incoming data box, and will scroll automatically when the end of the box is reached.
There is no speed setting because the ADK protocol’s speed is set globally for all accessory devices. Listing 4-12
shows the main.xml file that produces the user interface shown in Figure 4-6. There are a few settings for each object.
To better describe each of the objects, the example is divided it to three parts, ordered as they appear in the XML file.
The XML file for Listing 4-12 replaces that used for the prior examples.

Figure 4-6. Layout for the ADK monitor

Chapter 4 ■ android adK

84

Part 1 of the XML file describes the overall layout style and the first EditText box along with the associated
information, such as IDs, fill, location, and relative layout type. The ID for the first EditText box is incomingData.
Because there is no need for the incoming-data box to be edited, the flags after the ID and positional definitions for this
EditText box are set to turn off this functionality. The options for focus, cursor viability, and click ability of the box are
turned off by setting the associated Android flags to false. The next two options set a scroll bar to show when the text
has gone past the box’s bottom edge. The gravity is set to the top so the incoming text does not sit centered. The flag
android:inputType sets two options, telling the code that this box is a multiline box and that the spell check needs to be
turned off and not show any spelling suggestions. The last flag sets the hint to a string located in the strings.xml file.

Listing 4-12. main.xml, Part 1 of 3

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/relativeLayout1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="0.72" >
<EditText
 android:id="@+id/incomingData"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/outgoingData"
 android:layout_alignParentLeft="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"
 android:clickable="false"
 android:cursorVisible="false"
 android:focusable="false"
 android:focusableInTouchMode="false"
 android:scrollbars="vertical"
 android:gravity="top"
 android:inputType="textMultiLine|textNoSuggestions"
 android:hint="@string/hint" >
</EditText>

Part 2 describes the EditText box, which is to be used as the output box to send data to the Arduino. The box
will be identifiable to the code as outgoingData. The size is not described as absolute, as in the blink example, but as
dynamic compared to the other objects—this user interface will always use the available screen no matter the size.
The hint for this box is also set in the strings.xml file. Finally the input type is defined as text. This is a single-line
input box with the overflow continuing to scroll horizontally. This box also turns off the spell check.

Listing 4-12. main.xml, Part 2 of 3

<EditText
 android:id="@+id/outgoingData"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@+id/sendbutton"
 android:hint="@string/sendhint"
 android:inputType="text|textNoSuggestions" >
</EditText>

http://schemas.android.com/apk/res/android

Chapter 4 ■ android adK

85

Part 3 describes the last two objects of the user interface: the buttons. These two buttons take up the reaming
space at the bottom right of the screen, with the send button located closer to the input box. Both buttons are set up
as the toggle button was in the blink example; the text of the button is linked to a string and the button is set up to
call a function when it is pressed. As compared to the toggle button, these buttons are momentary and do not hold a
changed state when released.

Listing 4-12. main.xml, Part 3 of 3

<Button
 android:id="@+id/clear"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"
 android:onClick="clearScreen"
 android:text="@string/clear" >
</Button>
<Button
 android:id="@+id/sendbutton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_toLeftOf="@+id/clear"
 android:onClick="SendData"
 android:text="@string/send"
</Button>
</RelativeLayout>

The strings.xml file needs to be modified to contain the resources for the buttons and the EditText boxes;
Listing 4-13 shows the required changes. The new strings.xml file contains five tags: the app name, two hints,
and two button names. strings.xml is the only other XML file that needs to be modified for this example.
AndroidManifest.xml and accessory_filter.xml are needed, but require no modification.

Listing 4-13. New strings.xml File

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Mega ADK</string>
 <string name="hint">Data from Arduino board will be displayed here</string>
 <string name="sendhint">Type data to send</string>
 <string name="send">Send</string>
 <string name="clear">Clear</string>
</resources>

With the user interface finished, the code can be added to the main Java file to complete the functionality of the
serial monitor clone. Two different objects are used and therefore need to be imported. The following lines of code
need to replace the import android.widget.ToggleButton; line in the import section of CH4ExamplesActivity.java:

import android.widget.Button;
import android.widget.EditText;

Chapter 4 ■ android adK

86

The toggle button is no longer needed for this example, and the variable declaration can be replaced by the
following four lines of code in the variable section inside the class:

private Button buttonSend;
private Button ScreenClear;
private EditText DataFromArduino;
private EditText outgoingData ;

Listing 4-14 describes the last three functions needed to complete the application. The data-handling
function was described in Listing 4-11 and should already be located below the registerUIobjects function. The
IncomingDataHandler is already to go and includes the code to print the data to the EditText box. The EditText box,
along with the three other user interface objects, needs to be linked to the program by type casting the return value of
the findViewById method; the type cast follows this format:

(<object type>) findViewById(R.id.<object ID>);

The clearScreen and SendData functions are called when the user instates the event that is associated with the
button in main.xml. When the clearScreen function is called, it sets the EditText box identified as incomingData
back to the original sate by setting the text to null. The last function, SendData, grabs the text in outgoingData as a
string and then converts that data to a byte array before calling the write function.

Listing 4-14. New and Edited Functions for CH4ExamplesActivity.java

 private void registerUIobjects(){
 buttonSend = (Button) findViewById(R.id.sendbutton); // called in for other use, not
 // implemented
 ScreenClear = (Button) findViewById(R.id.clear); // in this program
 DataFromArduino = (EditText)findViewById(R.id.incomingData);
 outgoingData = (EditText)findViewById(R.id.outgoingData);
 } // end registerUIobjects

 //
 // Listing 4-11 code is inserted inplace of this block
 //

 public void clearScreen (View v) {
 DataFromArduino.setText(null);
 } // end clearScreen (View v)
 public void SendData(View v) {
 String convert = outgoingData.getText().toString();
 byte[] BytestoSend = convert .getBytes();
 write(BytestoSend); // sends buffer to the ADK
 outgoingData.setText(null);
 } // end void SendData(View v)
} // end class CH4ExamplesActivity

The Android application is ready to be installed after any possible errors are fixed. The Eclipse IDE throws two
warnings for this code because the buttons are declared and initialized but not referenced elsewhere in the code. It is
good practice to declare the buttons even if the attributes or functions of the object are not going to be used; having
the objects all set up and ready helps keep track of the objects available. This program will respond to any accessory
that has the proper identifiable information, and will take the incoming bytes and print the value as related to

Chapter 4 ■ android adK

87

ASCII—a value of 0x61 sent will print an a. The Android app is ready to accept incoming messages from any Arduino
sketch that is using the AndroidAccessory.h library, giving the same feeling as the serial functions.

Note ■ the AndroidAccessory.h functions replicate the serial functions and inherit the functionality of print and
println, and offer formatting options such as BIN, DEC, and HEX.

Arduino
The Arduino could be left up to the imagination at this point, but the next example sets up a quick echo from the serial
monitor to the ADK application and vice versa. This is handled by two while loops that will write the incoming data
when available from one side to the other. This example does not require any extra hardware connected to the pins on
the Arduino.

Load the sketch in Listing 4-15 to the Arduino Mega ADK.

Listing 4-15. Modified Software Serial Sketch to Link the Echo Serial to the ADK and Vice Versa

#include <AndroidAccessory.h>
AndroidAccessory ADK("Manufacturer", "Model", "Description",
 "1.0", "Pro Arduino", "0000000012345678");
void setup() {
 Serial.begin(115200);
 ADK.begin();
}

void loop() {
 if (ADK.isConnected()) {
 while (Serial.available() > 0){
 ADK.write (Serial.read());
 }
 while (ADK.available() > 0){
 Serial.write(ADK.read());
 }
 } // end if (ADK.isConnected)
} // end loop

Verifying the Code
With the application on the Android device and the sketch installed on the Arduino, plug the USB from the computer
into the Arduino and start a serial monitor at baud 115200. Once the monitor is ready, make sure that the application
is not currently open on the Android device and plug the Mega ADK host side into the Android USB. The application
should automatically ask for permission to start with the attached accessory. If after a few second the pop-up does not
appear, try reconnecting the USB on the Android side or pressing the reset button on the Arduino. Once the program
starts, the serial monitor should have printed some connection information, and data can be entered into either side’s
input boxes and sent, and should appear on the output box on the other device.

i

Chapter 4 ■ android adK

88

SPI and ADK
On the Mega ADK, as with other shields, the functionality to allow for the communication happens through a USB
host processor that uses the SPI protocol to communicate with the microcontroller. To demonstrate that other
SPI-capable devices still work with the ADK quite effectively, this last example reads a file from an SD card connected
to the Mega ADK board and prints the contents to the ADK monitor installed on the Android device. Listing 4-16
requires an SD card and an SD breakout board. The SD board that was used in the development of this example was
the microSD breakout made by Adafruit Industries (www.adafruit.com/products/254) and was chosen for its
level-conversion feature, which converts from 5V to 3.3V logic and has the form factor of a breakout instead of a shield.
A microSD card will also be needed for the Adafruit board. If a different SD board is currently available, there is no
need to get the Adafruit board, provided your board has the capability to directly connect to the correct SPI pins.
Shields for Atmel 328–based Arduino boards, such as the UNO, will not work because of the different SPI pin location.

Listing 4-16 is an Arduino sketch and uses the same Android application developed in the first example in this
chapter. The Mega ADK needs to be connected to the SD breakout board as described in Figure 4-7. The pins marked
DO (data out), DI (data in) and Clk (clock) on the SD breakout are connected to the MISO, MOSI, and SCK pins on
the Arduino Mega ADK board. Also on the SD breakout, the pin marked CS (chip select) is connected to pin 10 on the
Arduino. The power pins complete the setup, with 5V to 5V and ground to ground.

Figure 4-7. Layout for the ADK monitor

The sketch created in Listing 4-16 uses two libraries, SD.h and AndroidAccessory.h; to solve any pin definition
conflicts the SD.h library need to be included first. A byte array of 80 elements is created to buffer the data gathered
from the SD file before sending to the Android device. This is done to speed up the transfer, accommodating for both
devices on the SPI bus. The accessory object is defined in the same way as in the other examples. Once the code
enters the setup function, the ADK object is started and waits for the connection to be ready before proceeding to

http://www.adafruit.com/products/254

Chapter 4 ■ android adK

89

start the SD reader. Waiting for the connection to be fully operational allows for the information about the setup of the
SD reader to be caught and printed to the Android application. The loop function checks for the connection and will
try to reestablish the connection if disconnected. The code waits for a defined incoming character from the Android
before opening and reading the test file on the SD card to the buffer. If the file is not available, an error is printed in the
Android application. Step through Listing 4-16 and upload it to the Mega ADK board.

Listing 4-16. Arduino SD Reader and ADK Sketch

#include <SD.h> // must be included before AndroidAccessory.h
#include <AndroidAccessory.h> // needed library to work with ADK connections
 byte buffer[80];
 // initialize the accessory object with identifying data
 AndroidAccessory ADK("Manufacturer", "Model", "Description",
 "1.0", "Pro Arduino", "0000000012345678");
void setup() {
 ADK.begin(); // start the connection to the Android
 while(!ADK.isConnected()); // wait till the ADK is connected to finish setup
 pinMode(10, OUTPUT); // SD chip select
 if (!SD.begin(10)) { // start the SD and check for failure
 ADK.println("SD initialization failed!");
 }
 else
 ADK.println("SD initialization done.");
} // end setup
void loop() {
 if (ADK.isConnected()) { // check for connection
 if (ADK.available() > 0){ //check for incoming data
 if (ADK.read() == 'a') { // look for an incoming 'a' to start file transfer
 File TestFile = SD.open("test.txt"); // open the test.txt
 if (TestFile) { // if file did not open, throw an error
 while (TestFile.available()) { // read till the file end has been reached
 for (int i = 0 ; i < 80 ; i ++){ // read 80 bytes into buffer before sending
 buffer[i] = TestFile.read();
 }
 ADK.write (buffer , 80); // send buffer to the Android
 } // end while (TestFile.available())
 TestFile.close(); // close the file no longer needed
 } // end if (TestFile)
 else{
 ADK.println ("File Error");
 }
 } // end if (ADK.read() == 'a')
 } // end if (ADK .available() > 0)
 } // end if (ADK .isConnected())...
} // end void loop()

Once the Arduino is configured with the SD reader and programmed with the sketch, a test.txt file must be
created and located in the root directory of a FAT-formatted SD card. Copy any text readme file to the SD card from a
computer and rename it test.txt on the SD card. Plug the Arduino into the Android device, insert the SD card into
the reader, and power it on.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4 ■ android adK

90

When the ADK application starts, the status of the SD initialization should be printed to the screen. You should
see that the SD card has been found and is ready to use. If it fails, recheck the connections or reinsert the card. When
the initialization is done, type a into the input box and press send. The text.txt file should start printing; the whole
file will be printed 80 bytes at a time. If the file size does not divide evenly by 80 bytes, the last transmission will
contain and print garbage characters in the bytes the file does not fill. This sketch’s methods can be useful for pulling
logs from a sensor network or interfacing with other SPI devices, such as the Ethernet shield, with modifications to
work with the Mega-style pin out.

Summary
The world of Android-to-Arduino accessory development is now available to be further explored. Any Arduino code
that outputs through a serial connection can output to the ADK by including the AndroidAccessory.h library and
making a few changes to the serial references in any existing code.

This chapter demonstrated some of the basic workings of the Arduino Mega ADK. For further reading and more
in-depth information, check out the Android Developers web site (http://developer.android.com) and Beginning
Android ADK with Arduino, by Mario Böhmer (Apress, 2012).

This chapter described how to create a framework that can be used as a starting point for any Android application
that connects to an accessory device, along with a tool that is helpful for debugging. With the ADK, you can build
smarter robots, cooler blinking devices, and more dynamic art installations without having to lug around a bulky
laptop. It is even possible to develop an IDE to program other Arduinos from an Android device connected through
the Mega ADK. Aside from hardware constraints, imagination is the limit.

The software used in this chapter is sometimes a bit buggy and isn’t supported on all devices because of
their relative ages. As newer Android devices become available, support will increase, making it easier to develop
accessories for a broader market. The open hardware community has done a wonderful job of adopting this new
technology, with an ever-increasing number of development boards available—from the IOIO to the Mega ADK. The
community of developers has also kept up on the software; for example, when version 1.0 of the Arduino IDE was
released, the accessory library was difficult to work with and required some changes; now the Accessory library is as
simple to work with as serial and is continually improved upon.

http://developer.android.com

91

Chapter 5

XBees

Radio communication is a fundamental method of communicating over varying distances without having an
encumbrance of wires. Arduino developers take advantage of radio communication in robotics, home automation,
and remote-sensing applications. To avoid the headaches of developing radio communications systems from scratch,
a lot of developers use XBee radio modules to add wireless functionality to projects. The XBee is a full-featured radio
transceiver module made by Digi International (www.digi.com) and is compliant with FCC regulations as long as you
use the module without modification and adhere to a few other restrictions.

The restrictions that apply to the use of the XBee by the FCC and by other countries are listed in the data sheet
provided by Digi. Most XBee modules are also compliant with the ZigBee communication protocol, a standard based
on the IEEE 802.15.4 standard. XBees have the ability to communicate with other ZigBee-compliant devices.

The minimum hardware to get started exploring the world of XBees is a USB adapter, a serial adapter, an
Arduino-compatible board, and two XBee modules. You can use the USB XBee adapter sold by Adafruit Industries
(www.adafruit.com/products/247) or the one sold by SparkFun Electronics (www.sparkfun.com/products/8687).
The USB adapter is needed to interface with the computer for initialization and setup, and can provide a connection
from the computer to other XBee modules.

The XBee has a small pin pitch that’s not breadboard compatible, and it’s a 3.3V device, so to use the XBee with
an Arduino, you need a serial adapter to make the connections more easily and to convert the voltage levels. There
are a few different styles of serial adapters that can be used for connecting the Arduino to the XBee: the two most
notable are shields and breakout boards. They come with and without voltage conversion. Shields provide a method
of simplified packaging—excellent for semipermanent setups. Shields limit the number of devices that can be easily
used and are usually restricted to boards with the standard Arduino pin out. For greater development flexibility, it is
recommended to use breakout boards instead of shields. XBee breakout boards, such as the adapter available from
Adafruit (www.adafruit.com/products/126) or SparkFun (www.sparkfun.com/products/9132), will work for the
examples in this chapter and Chapter 6.

The examples in this chapter are built using one ATmega328 Arduino-compatible board, two series 2 XBee
modules, one USB adapter, and a serial breakout board. The focus of this chapter is on the series 2 XBee modules,
but they are not the only modules available from Digi. The first section describes the various models of the XBee
modules and the differences in functionality.

Buying XBees
It can be a bit difficult to discern the differences between XBee modules and match them to your project
requirements. There are currently nine different series, with multiple variations on antennas, functionality, and
transmission power. The series number is not an indication of version revisions, but of functionality and features.
Modules with the same series number are always compatible with one another. When deciding what XBee set to
purchase, you need to take constraints and the type of project into consideration. For example, for remote-control
robots, an XBee that uses a point-to-point communication protocol with an extended transmitting range would be
sufficient, even though the data rate may not be as fast as other modules. XBees for large sensor networks, on the

http://www.digi.com
http://www.adafruit.com/products/247
http://www.sparkfun.com/products/8687
http://www.adafruit.com/products/126
http://www.sparkfun.com/products/9132

Chapter 5 ■ XBees

92

other hand, may need to use a mesh protocol to be more robust in getting the data to the endpoint, with the range
not being as important. To avoid issues in debugging, and for best results when purchasing a first set of XBees, match
modules according to the series number, transmission power, and antenna type.

There may be a need in some projects to mismatch the modules, such as when using two modules with greater
range and having others in the network with lower transmitting power to more effectively cover an area. Keep in mind
when mixing the ranges of the modules that they can usually receive data at a faster rate than they can transmit data.
Another possible mismatch comes with pro versions of XBee modules. Pro modules are clearly labeled with the word
Pro on the module itself; these modules provide an integrated programmable microcontroller that acts in the same
way as attaching an Arduino to a standard XBee module. The pro modules are useful for stand-alone operations
or removing overhead from the Arduino itself. The move to the pro module is not necessary, and can add more
complexity because the microcontroller used is made by Freescale and has a programming methodology different
from the Arduino.

Here are the different series (series 1 and 2 are the most commonly used in Arduino development):

•	 Series 1: This series has a network topology of spoke-and-hub or point-to-multipoint and
uses the 2.4 GHz frequency band. Series 1 modules can be configured and used out of
the box without extra software. This series works well for remote control applications and
simple sensor networks. All communications go through a central node; outer nodes cannot
communicate with one another. This series has a rage of 300 feet to 1 mile.

•	 Series 2: This series is a bit more complicated than series 1, but provides more functionality
and flexibility. It’s capable of mesh networking, which closely resembles the common wired
networking topology of an ISP, router, and computer. There are three different internal
firmware options that can be used for a mesh network.

There must be one controller in the network, which functions like a DHCP server or ISP. •	
The controller assigns the address and determines if a new node can join the network.

Mesh networks also include router firmware and allow for multiple routers in the •	
network.

Routers connect to the controller and to endpoints, which are the third firmware option.•	

Both the controller and router have to be powered all the time and cannot take advantage
of the power-saving feature of sleeping; this is due to the modules keeping track of routing
information. The endpoint can be put into a sleep state. This series is usually marked on the
board by an S2 below the XBee markings. There are two other variants in this series: S2B
and S2C. S2B is the pro package and S2C is a surface-mount package. The regular S2 has
the standard XBee through-hole configuration. This series has a range of 400 feet to 2 miles.

•	 Series 3: This series offers a 900 MHz point-to-multipoint module with about 6 miles of range.

•	 Series 4: Modules of this series can be used for proprietary Digi mesh and point-to-multipoint;
they have an approximate range of 1.8 miles using 900 MHz.

•	 Series 5: This series is licensed for European point-to-multipoint in the 868 MHz band; it has
about 25 miles of range.

•	 Series 6: This series offers a WiFi module packaged in the XBee format. It uses SPI or UART for
connections and can work on B, G, and N networks.

•	 Xtend: Modules of this series have a range of 15 miles, the longest available for use in the
United States. They communicate at 900MHz. The network topology is proprietary multipoint
or proprietary mesh.

Chapter 5 ■ XBees

93

Note ■ Creating a network bridge is possible by connecting two different series, which converts between network
types.

Simple Setup
This section’s example sets up a simple communication for a set of series 2 XBee modules. There is some software
that needs to be set up before the XBees can start communicating. Unlike series 1 modules, which can be configured
for communications via a serial terminal, series 2 modules need different firmware for different nodes on the XBee
network. There are two different software packages that can perform the firmware configuration.:

•	 X-CTU: This is the Digi proprietary software package to program the XBee modules. The
software is available from the Digi web site, as well as directly from http://ftp1.digi.com/
support/utilities/40003002_B.exe. The X-CTU is capable of running on other operating
systems, such as Linux via WINE. You need to download the firmware ZIP file for series 2
devices if setting up the X-CTU on Linux. You can download it from www.digi.com/support/p
roductdetail?pid=3430&type=drivers. You also need to define a link so the WINE software
can use ttyUSB to create a link; to do so, type the following into a command shell:

ln -s /dev/ttyUSB0 ~/.wine/dosdevices/com1

•	 Moltosenso: This software package is made by a third-party vendor and has the same
functionality as the X-CTU. It natively works on the three common operating systems, Linux,
Mac, and Windows, and is available at www.moltosenso.com. This software may be a bit
buggy on some 64-bit Linux distributions. The ZIP files that contain the firmware have to
be downloaded from Digi. Be aware that this software does not automatically determine
the firmware that is compatible with the connected XBee module, but will work well for
configuring the module’s other settings.

When the XBee is loaded with the AT firmware, a serial terminal program such as minicom, PuTTY, or
HyperTerminal can be used to set and read options.

There are two different communication modes that the XBee module can be set to via different firmware:

•	 Transparent mode: Also known as AT command mode, transparent mode acts as a direct
serial connection, the same way hardwired connections work. Sensors like the Parallax RFID
readers can be connected over XBees in transparent mode without any other microcontroller
in between the sensor and the RF module. This mode provides a great method for direct
XBee-to-XBee communications and is useful in instances where the user needs to change
settings while a network is up and running. You can enter this mode by typing +++ without a
carriage return into a serial program and waiting for an OK to return. All the commands are two
characters prefixed by AT and followed by a carriage return. An example is the command ATSL,
which will print the lower four bytes of the module’s serial number.

•	 API mode: This is useful for lager dynamic network setups where the software or
microcontroller can easily change configurations without having to convert the
human-readable AT command mode. API has a predefined protocol and communicates via
packets. The use of the API mode is discussed further on in this chapter.

http://ftp1.digi.com/support/utilities/40003002_B.exe
http://ftp1.digi.com/support/utilities/40003002_B.exe
http://www.digi.com/support/productdetail?pid=3430&type=drivers
http://www.digi.com/support/productdetail?pid=3430&type=drivers
http://www.moltosenso.com

Chapter 5 ■ XBees

94

Transparent (AT Command) Mode
When setting up the series 2 XBee modules, write down the serial numbers for all the modules in a convenient
location. The serial numbers is also used as the hardware address and is located on the sticker just below the revision
marking and to the right of the 2D bar code on the XBee module. The first eight numbers of the serial number are the
higher 32 bits of the address—usually 0013A200. The second eight numbers is the lower 32 bits of the address.

Module Configuration
Now it’s time to set up your modules:

1. Determine which module will be used as the coordinator and which will be used as the
router, and mark them with a label to differentiate between them.

2. Plug the XBee module to be used as the router into the USB adapter, making sure to line up
the pins to the connector properly. The flat end usually points toward the USB connector.

3. Start the X-CTU software and plug the USB adapter into the computer. On the PC Settings
tab, select or enter the COM port that the adapter is connected to and click the Test/
Query button. The test should come up with the module type, firmware number, and
serial number. If there is an error, check the connections and the COM port number in the
device manager and retry. If this is the first time that the XBee module is being configured,
the standard serial configuration is 9600 8N1.

4. After the test is complete, click the Modem Configuration tab and click the Read button
in the Modem Parameter and Firmware box. If the module cannot be read at this point,
click the “Download new versions…” button. If you’re using Windows, choose “Web
source,” and for WINE setups, select file that was downloaded. Then retry reading the
configuration.

5. Once you have read the module, select ZIGBEE ROUTER AT from the Function Set
drop-down menu, and set the version of the firmware to the highest hex number available.

6. Check the “Always update firmware” box and click the Write button. This sets the firmware
but not any of the networking options; once this operation completes, reread the module
settings.

7. In the following list, the firmware drop-down shows the options available for change.
Options highlighted in green are at their default setting, and options highlighted in blue
are set to a different setting. The options that need to be changed are

The pan ID (ID)•	

Destination address high (DH)•	

Destination address low (DL)•	

 In transparent mode, the address is where the data will be sent. This can be changed by
entering the command mode. The pan ID is like the ESSID for WiFi networks, and can
be set from 0 to FFFF. The pan ID chosen for this example is 3300. click “pan ID” and
set to the chosen ID. The next two options are the serial numbers written down earlier:
the destination’s addresses. Both the high and low should be set to the serial number
of the module chosen for the coordinator. These three settings prepare the module for
communications in a network.

Chapter 5 ■ XBees

95

8. One last setting needs to be set before writing the options to the module, and it’s specific
to this example: the baud rate. There is a single number to identify the baud rate; the
default is 3 for 9600 baud. Change this setting to 6 for a baud rate of 57600. When the options
are highlighted in a yellow-green, they have been changed but not written to the module.
Uncheck the “Always update firmware” box and click the Write button in the Modem
Parameters and Firmware box, which will confirm and update the settings to the module.

9. Once the router is configured, unplug the adapter from the computer and remove the
module. Plug in the module to be used as the coordinator and repeat the steps used to
configure the router, but select ZIGBEE COORDINATOR AT for the firmware options and
set the destination address as the router’s serial number. Use the same baud and pan ID as
for the router module.

Arduino Setup
The modules are now ready for communications, and it is time to set up the rest of the example.

1. Leave the coordinator plugged into the USB adapter and plug the router into the serial
adapter.

2. Prepare an Arduino board by uploading the standard Firmata sketch as described in
Chapter 3. Make sure that the Arduino can communicate to the Firmata test application
before plunging the router into the Arduino, as shown in Figure 5-1.

Figure 5-1. Arduino/XBee module configuration

Chapter 5 ■ XBees

96

Verifying the Code
The Firmata sketch is uploaded to the Arduino and the XBees are both plugged into the computer and Arduino.
This configuration of the modules is in transparent mode, and the Firmata test app can now communicate with the
Arduino. It is optional to add a few buttons, servos, or LEDs to explore the application’s potential, or use the examples
created in Chapter 3. If the modules are not communicating, check the connections, settings, and selected COM port.

Note ■ You can make computer-to-computer chat possible with the XBee’s transparent mode and serial terminals by
connecting the XBee serial adapter to pins 2 and 3 of the arduino and loading the software serial sketch onto the arduino,
changing the baud rates in the sketch to match the XBee module.

API Mode
API mode is the alternative to AT command mode. The API that is implemented with the XBee module allows
programs to change internal settings, create direct routing, discover new nodes, and push remote AT commands or
firmware updates, along with other advanced control options. This mode uses packets that are referred to as frames in
the XBee data sheet.

There are currently 18 different frame types for series 2 modules; the first 4 bytes of the frame are always the same
type of information, as described in Figure 5-2.

Figure 5-2. API packet structure

The first byte of the frame is always •	 0x7E to show that a frame is starting,

The next two bytes are the length of the data contained in the frame; this number is the total •	
bytes from the fourth byte to the checksum.

Byte 4 is the frame type; this describes the data that makes up the data section of the frame, •	
notifying a program how to interpret the data. The frame data is specific to the frame
type. The structure is outlined for the various frames in the “API Operation” section of the
XBee data sheet; the series 2 data sheet is available at http://ftp1.digi.com/support/
documentation/90000976_K.pdf.

The last byte of the frame is the checksum and is calculated by subtracting the total value •	
of bytes from the frame type to the last byte of the frame data from 0xFF. This calculation is
done within a single byte, and any value above 255 is truncated. The checksum is used by
the modules to help determine that the frame is formed properly before sending and can be
used by the program to determine that the data received is the proper data. The frame may be
malformed when a verification frame is not returned or the when frame ID byte is set to zero.
The frame ID is usually the first byte of the frame data section of the frame; this is to determine
what frame is being talked about when information frames are returned. The frame ID is also
useful for sequential frames to determine the order when receiving frames.

http://ftp1.digi.com/support/documentation/90000976_K.pdf
http://ftp1.digi.com/support/documentation/90000976_K.pdf

Chapter 5 ■ XBees

97

Note ■ Frames are what Digi’s data sheet calls the series of data that is used for apI mode; the term frame is
interchangeable with packet.

Module Configuration
Configuring the modules for API mode is similar to the setup for the AT command configuration:

1. A single coordinator is needed. Change the firmware settings to ZIGBEE COORDINATOR
API and ZIGBEE ROUTER API for the router.

2. Set the PANID along with the baud rate; you can use the same settings as before for this setup.

3. The destination address is not necessary for this mode to communicate; packets
determine where the information is going.

4. Choose a name for the node identification (NI) setting when configuring the module;
ROUTER and COORDINATOR will suffice. The NI setting is helpful for identifying the
node. This is independent of the addresses and equivalent to a computers host name.

5. Upload the software serial sketch to an Arduino with both baud rates set to the XBee
modules’ rate of 57600, and connect the serial adapter to pins 2 and 3 of the Arduino,
as shown in Figure 5-3.

Figure 5-3. Setup for API examples. The XBee is connected to pins 2 and 3 for software serial

6. Once the Arduino is configured, connect via a serial terminal such as PuTTY, minicom,
or HyperTerminal, with the setting 57600 8N1.

Chapter 5 ■ XBees

98

API Packet Construction
Before delving into writing code, I’ll describe the X-CTU software, which provides a utility on the Terminal tab to
manually build packets. With the Arduino set up and the serial program running, “Goodnight moon!” should be
printed the Arduino’s serial monitor, indicating everything is working. Plug the coordinator into the USB adapter, start
the X-CTU software, double-check that the module can be accessed, and click the Terminal tab. On the Terminal tab
is information on the line status and a few options. Click the Show Hex button to get a side-by-side ASCII-and-hex
display, which will be a bit easier to read. Click the Assemble Packet button to bring up a window with an input box to
place packet information; by default the input box is in ASCII mode, so make sure to select the Hex option so that the
raw data can be entered.

The first packet you’re going to assemble is an AT command; this is equivalent to entering +++ ATND (followed by
a carriage return) in transparent mode. The ND command is for network discovery and will return information on all
XBees that can be accessed in the network; for example, the network ID, the 64-bit address, and the plain-text name
(if you set that option in the configuration). Packets are ordered from left to right or top to bottom. You can lay out the
general structure of the packet on a piece of paper: the first four bytes are essentially the header that contains the start,
the length, and the frame type.

Two of the bytes are known and can be filled in: 0x7E for the start and 0x08 for the frame type of the AT command
to be sent. The packet is not complete, so the length cannot be determined yet. The first byte after the header is the
frame ID that identifies the packet and enables the response to the packet: this is going to be set to 0x01 because only
this packet is going to be sent for this example.

The AT command comes after the frame ID and is the hex value of the two characters that describe the command;
in this case N (0x4E) and D (0x44) for the node-discovery command. Following the AT command characters is the
setting value used when changing the setting for this packet, No setting change is needed, so no more bytes are added
to this packet. The last byte of the packet is the checksum, which is calculated using the bytes that make up the frame
packet with the frame type byte, so add the following value:

0x08 +0x01+0x4E+0x44 = 0x9B

Then subtract this value from 0xFF to get the checksum value:

0xFF – 0x9B = 0x64

The last byte to calculate is the size, which is done by counting the bytes between the size and the checksum
(or the bytes used to calculate the checksum); in this case the size is 4 bytes. The final packet looks like this:

0x7E 0x00 0x04 0x08 0x01 0x4E 0x44 0x64

With the packet manually calculated, enter the bytes into the packet-assembly window in the X-CTU software
and send the data to the module connected to the computer. The node-discovery command sent will discover the
other modules that can receive data from the coordinator. After the command was sent, a reply packet will be received
that contains information on the nodes seen. The header of this packet will be 0x7E followed by the size and the frame
type 0x88, indicating that it is a response to the AT command sent. Any received frame will be identified by the frame
type, and can be compared to the packet type lists later on to help determine how to interpret the frame.

In the frame data, the first byte is the frame ID, which should match the frame ID originally sent, followed by the
command being responded to (which should be ND) and the command status of 0x00, indicating that the command
was successful. The rest of the data contained in packet includes the 16-bit network address, the 64-bit serial number,
a space, the node identifier, the parent network address, the device type, the status, the profile ID, the manufacture ID,
and the checksum. If the node-identifier variable was set on all the modules, their plain-text ID should be readable; in
this example, the string ROUTER should be clear on the ASCII side of the terminal window.

Chapter 5 ■ XBees

99

Sending Commands
There are two frame types that affect the local module:

The •	 AT command frame (0x08), which will immediately change values.

The •	 AT command queue (0x09), which holds changes until the apply-changes (AC) command
has been issued or a subsequent AT command (0x08) is sent.

The ability to send AT commands to a remote module is a unique function that is not available in AT command
mode. Sending remote AT commands uses a frame type of 0x17 and is constructed in a similar fashion as the local AT
frame (0x08). There is extra data contained in the frame data section after the frame ID byte:

First is the 64-bit destination address followed by the 16-bit network address. For the example •	
following, (0x00 00 00 00 00 00 FF FF) will be used for the 64-bit and (0xFF FE) for 16-bit.

The next byte is a command option; it has the same effect if set to •	 0x00 as the AT command
queue and needs the AC command to finalize the changes. The other options for the command
option byte are 0x02 to apply the changes immediately, 0x20 to use encryption if globally set
in the EE register, and 0x40 to use a longer transmission timeout. Settings 0x00 and 0x02 are
the only two of interest for this example.

The •	 AT command is after the command option byte; the node-discovery command will be
used for this packet to see what the ROUTER module can transmit to.

The example packet is the following:

0x7E 0x00 0x0F 0x17 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0xFF 0xFF 0xFF 0xFE 0x00 0x4E 0x44 0x5A

The example packet sends a request to all devices on the network, asking for those modules to perform a node
discovery and send back their findings to the originating device. The return packet follows the same structure as any
other packet, with the header, frame data, and checksum being in the same order. The returned packet’s frame data
has the 64- and 16-bit network address of the remote module added between the frame ID and the command bytes.
The frame data is identical in structure to the local command, excluding the added address bytes. The value for this
frame type is 0x97.

The example remote AT command packet will execute on all the modules that can hear the coordinator. On
large networks this can cause talk-over communication packet corruptions and is not advisable. In some situations
broadcasting a change-setting packet is needed, as when changing the pan ID of the whole network or changing
encryption settings. When changing settings across an entire network, change and apply the settings to the remote
modules before changing the local module.

Sending Data
Up to this point, configuration packets have been constructed and sent, but no data has been sent through to the
Arduino that is connected to the serial program. The packets for sending data are constructed in the same order as the
AT command packets, with the frame IDs being 0x10 and 0x11.

The •	 0x10 data packets are general-purpose data containers that leave the network routing up
to the modules.

In contrast, •	 0x11 packets have more options on how the packet should reach its destination.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 5 ■ XBees

100

Digi provides a web-based utility that makes the manual assembly of packets easy; it’s available at
http://ftp1.digi.com/support/utilities/digi_apiframes.htm. The utility calculates the errorsum and the
size bytes for any of the frame types, with a convenient layout of the byte field. To use this utility, select the frame ID
to be constructed.

1. For this example, select the request transmit (0x10), and use the broadcast address of 0x00
00 00 00 00 00 FF FF for the 64-bit address and 0xFF FE for the 16-bit address.

2. Leave the other options as they are and add the hexadecimal equivalent of “HELLO” to the
RF packet field (0x48 45 4C 4C 4F).

3. The button next to the packet field will build the packet that needs to be entered into the
packet assembly window of the X-CTU. The packet should appear as follows:

7E 00 13 10 01 00 00 00 00 00 00 FF FF FF FE 00 00 48 45 4C 4C 4F 7F

On the local module’s side, the return packet is of frame type 0x8B and contains the 16-bit destination address,
the number of transmit retries, the delivery status, and the discovery status. If both broadcast addresses are used, the
16-bit network address will be 0xFF FE if the 64-bit address of the module was used in transmitting with the 0xFF FE
network address. The returned packet will have discovered the actual network address of the remote module. The
three bytes after the network address indicate status—if the values come back as zeros, then the transition succeeded
for the example packet.

The Arduino that has the receiving XBee connected should have echoed the packet to the screen. The packet
shows up in the serial program as the printable characters, making most of the packet unreadable, but the data
section should be a clearly readable “HELLO.” The packet received that is echoed is the reply packet with frame type
0x90. This packet has no frame ID, the bytes after the frame type are the 64-bit and 16-bit addresses. The byte after
the network address and before the data is a status byte; this byte provides the program with information that can be
valuable when dealing with this packet. The status byte is a sum of four possible options:

•	 0x01: Packet was acknowledged

•	 0x02: Packet was acknowledged and is a broadcast

•	 0x20: Packet is encrypted

•	 0x40: Packet was sent from an end device

So, for example, if the byte is sent from an end device with a broadcast, the byte will have a value of 0x22.
The remaining bytes that complete the packet are the data and checksum.

Request Packets
Table 5-1 is a reference for the various packets that can be used to control the XBee modules. The frame name, the
frame type, a general description, and the frame data are provided. Remember that the frame type is the last byte of
the header, and following the frame data is the checksum.

http://ftp1.digi.com/support/utilities/digi_apiframes.htm

Chapter 5 ■ XBees

101

Reply Packets
Table 5-2 shows the packets that are usually formed in a response to another packet. They are created outside of the
program that creates the packet. These packets contain information that needs to be phrased so that the program can
use the information. These packets still follow the same general structure as the request packets.

Table 5-1. Packet Reference

Frame Name Frame Type Description Frame Data

AT command 0x08 Changes or reads local AT
commands.

Frame ID: 1 byte
AT command: 2 bytes
Command parameter: Variable

AT command queue 0x09 Prepares a change that is placed
in a queue.

Frame ID: 1 byte
AT command: 2 bytes
Command parameter: Variable

Transmit request 0x10 Sends data without a specified
route.

Frame ID: 1 byte
Destination address: 8 bytes
Network address: 2 bytes
Broadcast radius: 1 byte
Options: 1 byte
Data payload: Variable

Remote command
request

0x17 Sends an AT command to a
module over the air.

Frame ID: 1 byte
Destination address: 8 bytes
Network address: 2 bytes
Command options: 1 byte
AT Command: 2 bytes
Command parameter: Variable

Explicit addressing
transmit command

0x11 Directly controls the route a data
packet will take.

Frame ID: 1 byte
Destination address: 8 bytes
Network address: 2 bytes
Source endpoint: 1 byte
Destination endpoint: 1 byte
Cluster ID: 2 bytes
Profile ID: 2 bytes
Broadcast radius: 1 byte
Options: 1 byte
Data payload: Variable

Create source route 0x21 Creates a source route for the
local module to a destination
module. All transmitted packets
will take the specified route from
point A to B.

Frame ID: 1 byte set to 0x00
Destination address: 8 bytes
Network address: 2 bytes
Options reserved: 1 byte set to 0x00
Number of addresses or hops: 1 byte
Network address of hop along route: 2 byte
variable sets

Chapter 5 ■ XBees

102

Table 5-2.

Frame Name Frame Type Description Frame Data

AT command
response

0x88 Notification of AT command
status and data contained
within the register when read.

Frame ID: 1 byte
AT command: 2 bytes
Command status: 1 byte
Register data: Variable

Remote command
response

0x97 Same function as AT command
response for a remote module.

Frame ID: 1 byte
Source address: 8 bytes
Source network address: 2 bytes
AT command: 2 bytes
Command status: 1 byte
Register data: Variable

Transmit status 0x8B The acknowledgment packet of
data transmission.

Frame ID: 1 byte
Destination network address: 2 bytes
Number of retries 1 byte
Delivery status: 1 byte
Discovery status: 1 byte

Receive packet 0x90 The transformation of the
transmit request when received.

Source address: 8 bytes
Source network address: 2 bytes
Options: 1 byte
Data payload: Variable

Explicit Rx indicator 0x91 The transformation of route
transmit request.

Source address: 8 bytes
Source network address: 2 bytes
Source endpoint: 1 byte
Destination endpoint: 1 byte
Cluster ID: 2 bytes
Profile ID: 2 bytes
Options: 1 byte
Data payload: Variable

IO sample indicator 0x92 The packet used to signify I/O
activity revived when
configured to do such.

Source address: 8 bytes
Source network address: 2 bytes
Options: 1 byte
Number of samples: 1 byte
Digital channel mask: 1 byte
Analog channel mask: 1 byte
Digital sample sets: 2-byte variable sets
Analog sample sets: 2-byte variable sets

Sensor read
indicator

0x94 Packet received from Digi
1-wire adapter.

Source address: 8 bytes
Source network address: 2 bytes
Options: 1 byte
1-wire sensor: 1 byte
A/D values: 8 bytes
Temperature read: 1 byte

(continued)

Chapter 5 ■ XBees

103

Arduino Data Echo
With a bit of understanding of the formation and reading of packets, this example will demonstrate in code the
phrasing, retransmission, and construction of packets the code receives. The code will run on the Arduino and take
incoming data packets (0x90) from any module in the network and pull the data out to reassemble the packet and
retransmit back to the original source.

While the packet gets transmitted to the source, the code will print relative data to a serial monitor, such as a
notification when an incoming packet has been received, the raw packet itself, addresses of the originating source,
and the raw reply packet for sending. The code currently identifies and displays two different packets types (0x90) and
(0x8B). This is accomplished through a switch statement after the whole packet has been captured.

The switch statement is pretty effective and can be expanded to recognize and handle current packet types plus
any future additions. The packets are received and constructed in a byte array of 80 bytes, which is done to buffer the
packets and to help ensure they’re complete before any phrasing is done or transmission starts. Although the XBee
modules are capable of sending packets of greater sizes, this limit is to save on some space on the Arduino.

The setup is the same as in Figure 5-3, previously. The code uses software serial at 9600 baud and standard serial
at 57600 baud; the XBee modules have to be reconfigured to 9600 baud. There are two ways to reconfigure the baud
settings:

Use the X-CTU software to set the baud back to setting 3.•	

Construct and issue two •	 AT command packets: one for the remote module and the other for
the local module. The AT command is BD or 0x42 44, with the parameter being 3.

Table 5-2. (continued)

Frame Name Frame Type Description Frame Data

Node identification 0x95 Packet used when replying to a
ND command not always seen
through the serial.

Source address: 8 bytes
Source network address: 2 bytes
Options: 1 byte
1-wire sensor: 1 byte
A/D values: 8 bytes
Temperature read: 1 byte

Modem status 0x8A Module status packet. Status message: 1 byte

Route record
indicator

0xA1 Used when requesting route
records command not always
seen through the serial.

Source address: 8 bytes
Source network address: 2 bytes
Options: 1 byte
Number of addresses: 1 byte
Address set: 2-byte variable sets

Many to one route
request indicator

0xA3 Seen by modules when a
many-to-one route has been
received.

Source address: 8 bytes
Source network address: 2 bytes
Options: 1 byte
Reserved: 1 byte

Over the air firmware
update status

0xA0 Status of remote firmware
update.

Source address: 8 bytes
Source network address: 2 bytes
Options: 1 byte
Boot loader message: 1 byte
Block number: 1 byte
Target address: 8 bytes

Chapter 5 ■ XBees

104

Both require you to change the X-CTU COM setting back to 9600 to accommodate the new setting. This example
is one-sided, so packets sent to the Arduino will still have to be constructed in the terminal of the X-CTU; the HELLO
packet will work for this example, although any properly formed transmit request will work with this code. To finish
the setup for this example, step through the code and upload it to the Arduino.

Listing 5-1 is comprised of three parts. The first part sets up the variables and all the initialization of the Arduino’s
serial connections before entering the loop function. The loop functions waits for the software serial to be available and
checks for the packet start byte of 0x7E. A loop captures the packet and counts the incoming bytes while the software
serial is available. When the packet is received, the user is informed of the incoming packet along with the contents of the
raw packet by printing the details to the serial monitor before processing the packet. The first part of packet processing
is to calculate the checksum by calling a function. If the checksum is correct, the program continues with parsing the
packet and constructing and sending a reply packet that contains the same data that the received packet contained.

Listing 5-1. Arduino Packet Echo Code, Part 1 of 3

#include <SoftwareSerial.h>
byte incomePacket[80]; // buffer for incoming data
char incomeData [64]; // phrased data holder
byte replyPacket[80]; // packet construction buffer
byte sourceADR[10]; // source addresses
int datalen; // length of data received
int count; // total length of incoming packet
int length; // misc. length holder
byte calcsum ; // checksum
SoftwareSerial softSerial(2, 3); // the main software serial

void setup() {
 Serial.begin(57600); // serial to monitor
 softSerial.begin(9600); // serial to XBee
 Serial.println("Ready");
} // end setup

void loop(){
 if (softSerial.available() && 0x7E == softSerial.read()){ // check for start byte
 incomePacket[0] = 0x7E;
 count = 1;
 while (softSerial.available()){
 incomePacket[count] = softSerial.read(); // receive the incoming packet
 count ++; // keep track of incoming bytes
 } // end while (softSerial.available())
 Serial.println ("Recived a new packet");
 Serial.print ("Incoming packet is: ");
 for (int i = 0 ; i < count-1 ; i++){ // print raw packet
 Serial.print (incomePacket[i],HEX);
 Serial.print (' ');
 }
 Serial.println (incomePacket[count-1],HEX); // last byte of the raw packet
 calcChecksum ();
 if (calcsum == incomePacket[count-1]){ // throw error if the checksum does not match
 processPacket();
 } // end if calcsum
 else {
 Serial.println ("Error packet is not proper"); // the error when packets are malformed

Chapter 5 ■ XBees

105

 while (softSerial.available()){
 softSerial.read(); // on error flush software serial buffer
 }
 }
 }// end looking for start byte
}// end loop

Part 2 of the program contains the functions to calculate the checksum and parse the packets’ data. The
calcChecksum function pulls the length of the packet from the first two bytes after the packet start, and then the
checksum is calculated before retuning back to the loop function. When the processPacket function is called, the
user is informed that the packet has the correct checksum; the code then determines the packet type using the fourth
position of the packet. The switch statement responds to a transmission-reply packet (0x8B) and a data-receive
packet (0x90). The transmission-reply packet is handled by informing the user by printing to the serial monitor. The
data packet is handled by parsing out the address of the sending XBee and pulling out the data to be used to construct
a reply packet. During the whole process, the information is printed to the serial monitor.

Listing 5-1. Arduino Packet Echo Code, Part 2 of 3

void calcChecksum () {
 calcsum =0; // begin calculating errorsum of incoming packet
 length = incomePacket[1] +incomePacket[2];
 for (int i = 3 ; i <= length+2 ; i++){
 calcsum = calcsum + incomePacket[i];
 }
 calcsum = 0xFF - calcsum; // finish calculating errorsum
} // end void calcChecksum ()

void processPacket(){
 Serial.println ("Packet has correct checksum ");
 switch (incomePacket[3]){ // check packet type and perform any responses
 case 0x90:
 Serial.println ("The packet is a data packet"); // announce packet type
 for (int i = 4 ; i <= 13 ; i++){ // get both addresses of the source device
 sourceADR[i-4]= incomePacket[i];
 }
 datalen = count - 16 ; // reduce to just the data length to get the data
 for (int i = 15 ; i < datalen+15 ; i++){
 incomeData [i-15] = incomePacket[i]; // phrase out the data
 }
 Serial.print ("source addess is: "); // begin printing 64 bit address
 for (int i =0 ; i < 7 ; i++){
 Serial.print (sourceADR[i],HEX);
 Serial.print (' ');
 }
 Serial.println (sourceADR[7],HEX); // finish 64-bit address
 Serial.print ("network addess is: "); // begin printing 16-bit address
 Serial.print(sourceADR[8] ,HEX);
 Serial.print (' ');
 Serial.println(sourceADR[9] ,HEX); // finish 64-bit address
 Serial.print ("the packet contains: "); // start printing the data from packet
 for (int i =0 ; i < datalen ; i++){
 Serial.print (incomeData [i]);

Chapter 5 ■ XBees

106

 }
 Serial.println (" : For data"); // finish the data print
 constructReply();
 break; // done with the received packet
 case 0x8B: //start response to the return packet from sending data
 Serial.println ("Received reply ");
 break;
 default: // anouce unknown packet type
 Serial.println ("error: packet type not known");
 }// end switch
} // end processPacket()

Part 3 of the code echoes the data received from another XBee. The reply packet is built one byte at a time in
an array starting with the packet start frame, the type, and the frame ID. Portions of the packet that are a single-byte
setting are set one at a time. The parts of the packet that are from the received packet are added to the outgoing packet
via for loops (the parts added include the address to send the new packet to and a copy of the received data). When
the packet is almost complete, the packet size is calculated and added. The final calculation to be added to the packet
is for the checksum before the packet is sent, and the program continues waiting for new packets.

Listing 5-1. Arduino Packet Echo Code, Part 3 of 3

void constructReply(){
 Serial.println ("Constructing a reply packet"); // announce packet construction
 // start adding data to the reply packet buffer
 replyPacket[0] = 0x7E; // start byte
 replyPacket[1] = 0; // 1st address byte will be zero with current limitations
 replyPacket[3] = 0x10; // frame type
 replyPacket[4] = 1; // frame ID
 for (int i =5 ; i <= 14 ; i++){ // add addresses
 replyPacket[i] = sourceADR[i-5] ;
 }
 replyPacket[15] = 0 ; // set both options
 replyPacket[16] = 0 ;
 for (int i =17 ; i < datalen+17 ; i++){
 replyPacket[i] = incomeData [i-17]; // add data to packet
 }
 replyPacket[2] = 14 + datalen ; // set the lower length byte
 calcsum = 0; // start calculating errorsum
 replyPacket[17 + datalen] = 0;
 for (int i = 3 ; i <= replyPacket[2]+3 ; i++){
 calcsum = calcsum + replyPacket[i];
 }
 replyPacket[17 + datalen]= 0xFF - calcsum; // finish packet by adding checksum
 Serial.print ("The packet is: "); // start printing raw packet before sending
 for (int i = 0 ; i < replyPacket[2]+3 ; i++){
 Serial.print (replyPacket[i],HEX);
 Serial.print (' ');
 }
 Serial.println (replyPacket[17 + datalen],HEX); // finish printing packet
 Serial.println ("Sending Packet"); // start sending packet to original source

Chapter 5 ■ XBees

107

 for (int i =0 ; i <= 17 + datalen ; i++){
 softSerial.write (replyPacket[i]);
 }
} // end void constructReply()

With everything compiled and hooked up, a prepared packet can be sent from the X-CTU’s packet-assembly
window. Watch the code’s actions in a serial monitor that is connected to the Arduino. The serial monitor should
start printing information when a packet is received and proceed through the programmed responses. This code is a
demonstration of packet handling and sometimes messes up on receive and transmit packets, because of the lack of
more robust error correction.

To make the error checking a bit more robust, you can the check the reply packet against the created checksum
for the new packet and re-create it before the packet is sent. Other error checking can be performed with flow control,
timeouts, resends, and packet-acknowledgement communication. The transmit status frame type (0x8B) that is
returned when a packet is sent does not indicate that the packet was successfully received by anything other than XBee
modules. A microcontroller should form a reply packet to the state of a received packet if the incoming packets are from
serial out from an XBee module. This method of packet handling is demonstrated in greater depth in Chapter 8.

If the code in Listing 5-1 does not respond, resend the packet a few times before checking the configurations. You
can also issue an ND command to check the XBee radio connection. If the radios can see one another, double-check
the serial connections on the Arduino and, if necessary, revert to the software serial, and then double-check the code.

Endpoint Firmware
The last firmware option is that of endpoint for both AT and API modes. They act similarly to any other module
firmware by issuing and receiving data. However, unlike the router and coordinator, end devices do not route
packets to other devices. End devices also have the capability to enter sleep mode because they do not store routing
information. Sleep mode makes end devices the preferred choice when making remote sensors or controllers that
need low power consumption.

There are three types of sleep configuration that are set via the sleep mode (SM) register:

Setting a value of 1 in the •	 SM register will put the module in hibernate mode. When XBee pin 9 is
high, the module will not respond to any transmissions or requests, but will return from sleep.

Setting the •	 SM register to 4 is for cyclic sleep. In this mode, the endpoint module will still
respond to incoming transmissions. When using API mode, the extended timeout option
(0x40) needs to be set in the packet’s transmit options, giving the end device time to wake
up and respond. The controlling program in this mode must wait till the Clear to Send (CTS)
flow-control line is low.

Setting the value to 5 works the same as 4, but allows a transition from low to high on XBee pin •	
9 to wake the module for transmission.

Endpoint modules have the capability to connect to either routers or coordinators. The code and setup for the
last example will work for the end device.

1. For this setup, reconfigure the router module with ZIGBEE END DEVICE API.

2. Use the same settings to create a network, change the node identifier to ENDDEVICE, set
the SM register to 4, and connect back to the Arduino.

3. Reconstruct the HELLO packet with 0x40 in the options byte, and send this packet to
watch the code work. In this configuration, when the end device receives a packet, it will
be awake for a period of time to allow the module to transmit the outgoing packet.

Chapter 5 ■ XBees

108

The next example (see Listing 5-2) Arduino sketch uses sleep mode 5, demonstrating a method of allowing other
modules in the network to wake and send data to the end device, while allowing the code to wake up the module
to send data. The code examples use the setup in Figure 5-4; the only change to the Arduino connections is that
an extra connection is added between the serial adapter and the Arduino, connecting XBee pin 9 to Arduino pin 9.
Both modules need to be set with AT command mode firmware—ZIGBEE COODINATOR AT for one and ZIGBEE
END DEVICE AT for the other. The modules need the destination addressed set to be able to communicate. When
configuring the end device, set the SM register to 5, allowing the code and other external events wake up the module.

Listing 5-2. Arduino Dual-Direction Communication with Sleep Mode Communications

#include <SoftwareSerial.h>
SoftwareSerial mySerial(2, 3); //rx,tx
void setup() {
 pinMode (9 , OUTPUT);
 Serial.begin(9600);
 Serial.println("Ready");
 mySerial.begin(9600);
} // end setup

void loop() {
 digitalWrite (9 , LOW);
 if (mySerial.available())
 Serial.write(mySerial.read());
 if (Serial.available()){
 digitalWrite (9 , HIGH); // transition from LOW to HIGH to wake up module
 delay (2);
 digitalWrite (9 , LOW);
 delay (2); // delay to give the chip time to recognize the transition
 mySerial.write(Serial.read());
 } // end if (Serial.available())

} // end loop

Chapter 5 ■ XBees

109

Figure 5-4. End-device configuration

The code is a simple chat-style program that can receive data from another XBee and transmit data itself. With
everything configured and plugged in, start a serial program to monitor and send data from the Arduino; use the
terminal in the X-CTU’s terminal for the coordinator. Any data typed into either terminal will show up on the other
terminal. When typing in the terminal for the Arduino, the code does not echo the typed data back to the terminal; the
local echo in the terminal would need to be set for you to see the typed characters. This setup is good when devices
need to access or poll from the end device when power consumption is a concern.

Summary
This chapter demonstrated working with XBee modules in both AT command mode and API packet mode. There
are a lot more configuration and communication options available, such as implementing encryption, working with
other ZigBee-compatible devices, and using the other available pins for analog-to-digital sensors or controlling PWM.
The XBee data sheet for the modules provides a wealth of information. This chapter did not discuss setting up a large
network of XBees, but the concepts described are scalable.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

111

Chapter 6

Simulating Sensors

Arduinos can be used to simulate sensors for Arduinos or other platforms that use sensors. Simulating sensors allows
you to produce repeatable and known data that can be used to test and debug systems, as well as explore sensors that
may not be available. The concepts in this chapter focus on the connection types of various sensors instead of the
data sent. Although the data is purposely skewed, it is being sent via the same methods used by the actual sensors.
To better demonstrate that Arduinos can directly simulate the various sensors, reader code for each type of interface
is included with the examples; this code is unmodified sensor reader code available from various sources.

These concepts are not designed to replace sensors, and may take more time to get working than using the actual
sensor for small projects. The techniques of sensor simulation become useful for applications that require controlled
data manipulation, such as robotic development, testing platforms, and studying how a sensor works. Ultimately, this
chapter aims to help you get over some of the speed bumps you’ll encounter when developing systems to simulate
sensors or creating more complex sensor packages.

Sensors convert various physical changes to electrical data, which can then be read by computer systems.
Temperature, position, and chemical concentrations are examples of physical elements that can be measured by
sensors. When emulating sensors, it is not important to simulate the entire workings or the complete functionality;
however, the data needs to be sent at the same time, in the same order, and with the same method as the sensor
being simulated. Data sheets provide the necessary information for a sensor’s important functions (e.g., data range,
communication types, and data types). The hardware requirements for this chapter are two Arduino-compatible
boards based on the ATmega 328P and a good assortment of general prototyping components. One Arduino is to be
used as the sensor reader and the other is to simulate a sensor. Using two boards will accommodate a wide range of
sensors and allows the sensor sketch to remain separate from the reader’s sketch. This allows for the most accurate
simulation in terms of program timing, and when the simulated sensor is replaced with a functional sensor, it requires
no modification of the sketch on the reader side.

Analog Sensors
There are a variety of analog sensors that can measure temperature, movement, or position, for example. These types
of sensors continuously control the output voltage, which is directly correlated with the state of the sensor. The output
information can then be read by the Arduino when the analog pins are accessed. You could mimic the analog data
with a potentiometer, but since a potentiometer is a sensor type itself, it is not effective for automated control.

The Arduino has analog inputs but no true analog out. There are methods to remedy the lack of analog output
with a digital-to-analog converter (DAC) or a digital potentiometer, which are great for full production systems, but
they are rarely found in the average collection of components. The examples in this section demonstrate how to make
two different DACs using only resistors and capacitors to produce analog signals. The first example is focused on an
Analog Devices TMP35 temperature sensor code for the Arduino.

Chapter 6 ■ Simulating SenSorS

112

Analog Sensor Reader
Listing 6-1 is the reader code for both analog sensor examples. This code should be loaded onto the Arduino that
is to be used as the sensor reader; the other Arduino will be used as the sensor that provides the analog signal. The
way the code works for Listing 6-1 has not been changed from the original online example from the LadyADA web
site (located at www.ladyada.net/learn/sensors/tmp36.html), although the comments have been reworked. The
example is for a temperature sensor, but the concept of reading the analog pin and then correlating the math with the
sensor’s output works for other analog-type sensors. Listing 6-1 reads analog pin 0 and prints the data converted to
temperature to the serial monitor.

Listing 6-1. LadyADA Temperature Sensor Reader Code with Reworked Comments

int sensorPin = 0;

void setup() {
 Serial.begin(9600);
} // end void setup()

void loop() {
 int reading = analogRead(sensorPin);
 float voltage = reading * 5.0; // covert reading to voltage
 voltage /= 1024.0; // divide the income voltage by max resolution of the ADC
 Serial.print(voltage); Serial.println(" volts");
 float temperatureC = (voltage - 0.5) * 100 ; // reduce by 500mV and mutiply
 // 100 to get degrees Celcius
 Serial.print(temperatureC); Serial.println(" degrees C");
 float temperatureF = (temperatureC * 9.0 / 5.0) + 32.0; // convert C to F
 Serial.print(temperatureF); Serial.println(" degrees F");
 delay(1000);
} // end void loop()

RC Low-Pass Filter
The first method to achieve analog output is to use an RC low-pass filter. The filter is comprised of a capacitor and a
resistor connected in serial. The capacitor is charged by a pulse-width modulation (PWM) signal from the Arduino
and drains through the resistor to the analog input on the reading Arduino. This method of converting a digital signal
to an analog signal works because a capacitor takes time to fully charge, and by controlling the time that the digital pin
is high, the charge within the capacitor will achieve a percentage of the total voltage possible from the digital pin.
A PWM at a duty cycle of 50 percent will charge to approximately 50 percent, making it half of the voltage available.
For a digital pin capable of 5V, the total charge will be ~2.5V.

In this setup, if the capacitor is too small, it will drain faster than the pulses can charge it and not provide an
adequate voltage to the analog pin; a large capacitor will increase the time the filter takes to drop from a full charge.
As long as the capacitor value is not to small, a low capacitance can be used to simulate sensors that are very
responsive and undergo rapid voltage changes. It may be advantageous on less responsive sensors to use not only
a higher capacitance but a somewhat higher resistance to slow the voltage change. The resistor keeps the capacitor
from draining back into the PWM pin: use a low resistance to avoid lowering the overall voltage. This method is an
effective way to convert a digital signal to analog when precision is not as important because the PWM only has 256
steps (0 to 255) for a 5V system that is approximately 0.019 to 0.02V per step. There is also a small amount of jitter
associated with the RC filter in this setup, which reduces the precision. This jitter is not entirely a bad thing, especially
for a sensor setup such as a control loop that responds directly to the input. Simply, a sensor that sends an analog
signal may experience some jitter, so a simulated sensor that jitters will in those cases better match the actual sensor.

http://www.ladyada.net/learn/sensors/tmp36.html

Chapter 6 ■ Simulating SenSorS

113

To set up the hardware, refer to Figure 6-1; the 5V pins and one ground on each Arduino are hooked together so
the sensor Arduino can get power and to ensure that the Arduinos can communicate by having a common ground
(this is the same for all examples). The RC filter setup uses an electrolytic capacitor with the ground side hooked up to
Arduino ground and the positive side to analog in on the reader. On the sensor Arduino, pin 9 is connected to one side
of a resistor, and the other side is connected to the positive pin on the capacitor.

Figure 6-1. RC low-pass filter setup

Listing 6-2 demonstrates the output by manipulating a variable that is declared as type byte and then written to
the PWM pin 9. Any type of manipulation can be performed on the sensorOut variable by receiving commands from
the serial monitor to set the output value, or computing a range to better match the sensor type being simulated (such
as one that sweeps from 0 to 100°C).

Listing 6-2. Code to Be Uploaded to the Sensor Arduino

byte sensorOut = 0x00;

void setup() {
 pinMode(9,OUTPUT); // serial can be set up here
}// end void setup()

void loop() {
 sensorOut++; // the manipulation of the output variable
 analogWrite (9,sensorOut); // the actual sensor simulation
 delay(1000); // delay is to match the update speed of the sensor
}// end void loop()

Chapter 6 ■ Simulating SenSorS

114

Verifying the Code
Once everything is uploaded and set up, plug in the USB from the computer to the reader Arduino and start the serial
monitor. The reader will print what it receives off the analog pin and print the voltage, the degrees Celsius, and the
Fahrenheit conversion. The sensor Arduino will output from 0V to ~5V at ~0.02V per step, or approximately −50°C to
450°C at 2C° per step.

Resistor Ladder
The resistor ladder, or R-R2 ladder, offers the other method to give an Arduino analog out. It uses 20 resistors, with 9
being one value and the other 11 being twice that value. An R-R2 ladder is essentially a network of voltage dividers.
This method works by chaining many digital inputs to one output by successively changing voltage across different
sets of resistors. This is a parallel binary method of controlling the output voltage. The lowest significant bit is the
input closest to the ground resistor, and the highest significant bit is on the opposite end of the chain connected to the
output. Figure 6-2 demonstrates a schematic of the resistor ladder, in which Vin 0 is the lowest significant bit and will
have the smallest voltage change when it is in a high state. You can expand a resistor ladder to any bit resolution by
adding extra Vin n+1 units to the end of the ladder.

Figure 6-2. R-R2 ladder schematic

The resistor values used can be arbitrary, as long as one value is twice the value of the other and not so great as to
affect the final output. Decent values to start with are 1kW and 470W. With a stack of 5% resistors and a good voltmeter,
it is possible to get a good 2:1 ratio with these resistors. You can make an R-R2 ladder scalable to any bit precision by
adding or removing two resistors from the chain.

For this example, a 10-bit converter will be made to match the resolution of the Arduino’s ADC. Then the code
will implement a 10-bit binary counter to control the constructed DAC. The resistor values will be referred to as 1R for
the lower-value resistors and 2R for the ones of twice that value.

To get set up refer to Figure 6-3, start with one 2R and connect one end to ground and the other end to another
terminal strip on the same side of the board. Then from that terminal strip in a continuing pattern down that side of
the board place the nine 1R connecting, the last one to analog pin 0 on the reader Arduino. The remaining ten 2Rs
have one end placed at all the junctions of the 1R and the other end connected to sensor Arduino pins starting from
pin 2 to pin 11 in order from the resistor closest to the ground 2R. The other remaining connections are the 5V and
ground pins between the Arduinos. The code for the reader is the same as loaded for the RC low-pass filter.

Chapter 6 ■ Simulating SenSorS

115

The sensor code implements a basic binary counter and introduces the use of programming an Arduino using the
AVR registers. The use of the registers in some cases can simplify the code and make it smaller, but it also increases
the complexity of the program. Four registers will need to be manipulated for this code: DDRB, DDRD, PORTB, and PORTD.
The first four letters of these names refer to the register’s type, and the last letter designates which set of pins on the
Arduino is being referenced. All the ports discussed are going to be 8 bits in size (or 2 nybbles).

If the register descriptor is followed by a •	 D, this refers to pins 0 through 7.

If followed by a •	 B, then it refers to pins 8 through 13, with the last two bits being unusable on
anything being referenced to B.

Correlating the binary to the pin starts at the lowest significant bit as read, so to turn on pin 0 the Arduino PORTD
will be equal to 0b00000001.

The •	 DDRx is the data direction register, which tells the pins whether to be input(0)
or output(1). This is done by setting the DDRx equal to a byte of data, such as DDRD =
0b11100011, which will tell pins 7,6,5,1, and 0 to be outputs and pins 4, 3, and 2 to be inputs.
Setting pins by this method is the same as calling the pinMode(pin, direction) function for
each pin in the setup() function. If serial functions are still required, the two lower bits on
xxxxD must be left alone, making the whole byte unavailable.

Setting the •	 PORTx register equal to a byte allows the groups of pins to be turned on or off within
one line of code, depending on the bytes. In contrast, if a variable is set to equal a PORTx,
then the contents of the register are read, and, depending on the mode that is set in the DDRx,
will determine where the bits of data come from: internally for output(1) and externally for
input(0).

Figure 6-3. R-R2 ladder setup

Chapter 6 ■ Simulating SenSorS

116

You need to load the code from Listing 6-3 onto the Arduino to use it as the sensor. The code sets up pins 2
through 11 with the register to demonstrate the same function as pinMode(). The code then counts a variable of
type unsigned int up to a value of 1024 so that the count will not continue to the maximum 16-bit value of 65535,
truncating the count to 10 bits by an AND mask. The code then shifts the data to match the proper pins and masks out
unneeded bits with the bitwise AND, placing the data in respective registers. Because the Arduino IDE is built on top
of the AVR C compiler, nothing needs to be included or declared to use the register names; they can just be typed and
work the same way as any variable.

Caution ■ manipulating the registers directly is an advanced programming technique that may not work consistently
on all arduino-capable boards. Check the pin mapping for the specific board and the data sheet for the register.
For example, the arduino mega PORTB controls pins 10 through 13 as the upper four bits and pins 50 through 53 for the
lower four bits.

Listing 6-3. Sensor code

unsigned int manipVar=0; // the only variable needed to achieve output

void setup() {
DDRD = DDRD | 0b11111100; // set pins 2–7 as output or leave pins 1,2
 // alone for serial comunications
DDRB = DDRB | 0b00001111; // set 8–11 as output, leaving the rest alone
} // end void setup()

void loop() {
 manipVar++; // any manipulation can be performed on manipVar
 manipVar &= 0b0000001111111111; // mask that resets manipVar when 1024 is
 // reached
 PORTD = (manipVar << 2) & 0b11111100;// shift left by 2 bits then mask
 // to get pins 2–7 straight out of manipVar
 // then write value to pins on pins 2–7
 PORTB = (manipVar >> 6) & 0b00001111;// shift right by nibble+crumb
 // to set the value for pins 8–11
 delay (1000); // to match refresh of sensor type
} // end void loop()

Verifying the Code
With the code uploaded to both Arduinos and the breadboard populated, plug in the reader and start the serial
monitor. The same information that was displayed in the last example will print to the screen this time, with
approximately 0.0048V per step, or about 0.5°C and the same temperature range.

This method reduces the jitter that is associated with the RC filter and matches the maximum resolution of
the ADC, making it a better choice to simulate an analog sensor. The disadvantages are the number of pins used,
the number of parts, and the advanced programming method required to achieve a clean count. With the setup
demonstrated in this section minus the delay, it takes around 4ms to count from 0 back to 0, making a ~250HZ
sawtooth wave and about 4ms between output changes. If the code is kept small, it is feasible to make a lightweight
function generator out of an Arduino by looping a byte array; it is also feasible to simulate piezoelectric knock
sensors.

Chapter 6 ■ Simulating SenSorS

117

Note ■ to explore this code a bit more, replace the r-2r ladder with an array of ten leDs, hook up a potentiometer
to analog 0, and then set manipVar equal to analogRead(0) and lower the delay to 100 ms. power up and watch the
conversion from the potentiometer to binary.

Digital Sensors
When working with sensors, it often feels like there are as many different ways to digitally work with them as there are
sensor types. This section covers a common cross-section of communication styles. To simulate these sensors, it is
important to match the specifications of the various protocols. Data can be sent or received, sent in any order, sent to
multiple devices, or requested at any time, making some of these devices very difficult to implement. Both the devices
and the Atmel data sheets are valuable resources for determining the best method needed to simulate a sensor.

PWM
PWM sensors are not as common as other types, but still deserve an honorable mention. PWM is commonly used
to control servos; in a sense, PWM sensors replace the R/C receiver, which is arguably a type of sensor. Although the
microcontrollers used in Arduino lack some elements to precisely match the specifications of a majority of the sensors
that use PWM as a data mechanism, they are capable of reading them. The pulseIn() function can read the output
PWM signal of another pin with enough consistency that a data correlation can be formed. The code that can be used
to simulate a sensor of this type is similar to the code in Listing 6-2; couple that with a lack of sensors that implement
PWM within the timing tolerances of the Arduino, and there is no need for an example in this section. The use of this
style of passing digital information can be useful in the creation of other sensor packages.

Gray Code
Gray code is a digital method that uses two or more pins to produce a square wave that is out of phase from one sensor
output pin to another. The method of phasing multiple signals allows the direction and position changes to be read
at any time. The way in which the square waves are out of phase determines whether the bit shift is left or right. Gray
code is also known as reflected binary, and is commonly used to make sensors that convert either linear or angular
movement into countable pulses to determine position, direction, and speed. This is how scroll wheels on computer
mice work. Gray code is also commonly used in robotics for rotary encoders. If one output is read as a reference
signal on either a falling or rising logic, then the other outputs read at that time will denote the direction. If the second
output is LOW before the first pin is read, it is moving one direction, and if HIGH, it is going the other direction.

The minimum amount of pins needed for this sensor is two for data and one for ground/voltage supply. The
more logic pins a sensor has, the more accurate it can be, by providing the ability to error-check for missing pulses.
Figure 6-4 shows the pulses of a dual-output encoder with one output read as rising and falling; the state of the second
output depends on the shift direction of the first output at read time.

Chapter 6 ■ Simulating SenSorS

118

It is up to the reader/controller to keep track of the pulses to determine if a full rotation or swing has been
achieved. The code for the reader also has to determine the direction the gray code is shifting. For the sensor reader,
Dr. Ayars wrote an article on how to read a rotary encoder (SparkFun part number COM-09117). In this example, the
code increments/decrements a variable depending on the direction the encoder was traveling when the detent was
reached, but not the number of rotations preformed. More information on reading this type of sensor is available on
Dr. Ayars’ blog, at http://hacks.ayars.org/2009/12/using-quadrature-encoder-rotary-switch.html.

The technique used in Listing 6-4 is one method of reading gray code and is excellent for reading two output encoders.
A more advanced method is needed for three or more pin encoders to achieve the error correction of positioning and count.
The following code needs to be loaded on the Arduino to be used as the reader for the first half of this example.

Listing 6-4. Dr. Ayars’ Code with Reworked Comments

byte Blinker = 13;
int Delay = 250;
byte A = 2;// 1st sensor Out pin
byte B = 3;// 2nd sensor Out pin
volatile int Rotor = 0; // sensor click count

void setup() {
 pinMode(Blinker, OUTPUT);
 pinMode(A, INPUT);
 pinMode(B, INPUT);
 digitalWrite(A, HIGH); // Turn on pull-up resistors
 digitalWrite(B, HIGH);
 attachInterrupt(0, UpdateRotation, FALLING);// use interrupt on pin A
 Serial.begin(9600);
}// end setup()

void loop() {
 digitalWrite(Blinker, HIGH); // Blink LED
 delay(Delay); // any code can run here. the sensor will be
 digitalWrite(Blinker, LOW); // updated upon interrupt on pin 2.
 delay(Delay);
} // end loop()

Figure 6-4. Pulses of a dual-output encoder

http://hacks.ayars.org/2009/12/using-quadrature-encoder-rotary-switch.html

Chapter 6 ■ Simulating SenSorS

119

void UpdateRotation() {
 // update sensor's reading upon the falling edge of pin 2
 if (digitalRead(B)) {
 Rotor++; // increment direction if second pin is HI
 } // at time of the interrupt
 else {
 Rotor--; // decrement direction if second pin is LOW
 } // at time of the interrupt
 Serial.println(Rotor, DEC);
} // end UpdateRotation()

Outputting Gray Code
For the Arduino to mimic the gray code, it must produce multiple square waves that are evenly out of phase from
one to another. Using a series of digitalWrite() function calls to control the output pins’ states and a delay() to
control the phase is a perfect way to control a series of digital signals that need a specific order. One digitalWrite()
is used per output of the rotary encoder to be mimicked, with a delay() after each write to make an overlap of the
digital cycle. An encoder that has two outputs needs two digitalWrite() calls in a loop, with a delay() after each
write, flipping the state that is written to the pin each time the loop is run. A square wave will be produced, having a
total cycle time equal to twice the total delay time. Each time the loop is run, one half of the gray code cycle is output.
The order in which the pins are manipulated determines the direction of the encoder; the orders are opposite if the
forward order goes from pin 1 to 3 and the reverse order goes from 3 to 1. The percentage of time that the cycle is
out of phase is controlled by the delay() after the digitalWrite(). To calculate the phase difference, the individual
delay() is divided by total delay(). For two outputs having a total delay of 6ms and individual delays of 3ms, the
second output is out of phase by 50 percent.

Some rotary encoders have outputs that are out of phase by 100 percent, being in completely opposite states.
To achieve a four-output encoder with the third output being the opposite of the first output and still having an even
distribution of phase, the first output has to flip state at the same time as the third, and the fourth output needs no
delay, creating a cycle of 6ms with a 1ms phase shift. The cycle time created is representative of how fast the sensor
can be manipulated.

To calculate the maximum rate an encoder can simulate, divide 60 by the total cycle time multiplied the total
steps over a specific distance. The distance for rotary style is one revolution and the linear distance can be inches,
centimeters, or another unit. The encoder being emulated for the example has a cycle of 12 steps per revolution.
The shortest cycle time implemented by the reader code is 8ms, making the calculation 60s / (0.008s / step * 12 steps /
revolution) = 625rpm. The digitalWrite() is negligible in calculating maximum manipulation speed. The added
time is about 6.75ms for this code, giving a 0.3% tolerance. If the delay is removed, the sensor can run at about
1.8 million rpm.

Calculating the maximum speed capable is not for determining the delay to use, but for information about the
application of the simulated hardware in control feedback loops. The delay to use between the pin writes should be
at least 1ms, and a separate delay should be used to control and vary the manipulation speed. If the sensor code is
having problems accurately reading the sensor’s output, increase the delay between the digitalWrite() function
calls.

The setup for the hardware is as shown in Figure 6-5, with reader pins 2 and 3 connected to sensor pins 10 and 11,
respectively. Two momentary switches used to control the direction of the output pulses are connected to ground
and independently connected to sensor pin 2 for down and 3 for up. The code from Listing 6-5 needs to be loaded
on the Arduino to be used as the sensor. The reader Arduino is loaded with the code from Listing 6-4. Simulating this
rotary encoder requires one more pin than the actual sensor; the ground and 5V pins need to be connected between
the two Arduinos.

Chapter 6 ■ Simulating SenSorS

120

Listing 6-5. Arduino Sensor Code

byte first , second; // order of pin change
boolean click , stateChang;// send click and the state to change to variables

void setup() {
 pinMode(2 , INPUT); // encoder down button
 pinMode(3 , INPUT); // encoder up button
 pinMode(11 , OUTPUT); pinMode(10 , OUTPUT); // encoder outputs
 digitalWrite(2 , HIGH); digitalWrite(3 , HIGH); // input pull-up resistors
 digitalWrite(10 , HIGH); // initial state
 digitalWrite(11 , LOW);
 stateChang = true;
}// end void setup()

void loop() {
 if (digitalRead(2) == 0){ // down
 first = 10; second = 11; // pin 10 writen befor pin 11 for down diretion
 click = true;
 }
 if (digitalRead(3) == 0){ // up
 first = 11; second = 10; // pin 11 written before pin 10 for up direction
 click = true;
 }
 if (click == true) { // send 1/2 pulse when a button is pressed
 stateChang = !stateChang; // flip the state to be written
 digitalWrite(first, stateChang); // change 1st pin
 delay (2); // delay befor changinng next pin

Figure 6-5. Gray code simulation setup

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 6 ■ Simulating SenSorS

121

 digitalWrite(second , stateChang); // change 2nd pin
 delay (2); // delay befor changning next pin at highest speed
 click = false ; // reset
 }
 delay (100); // slowing the code down = moving encoder slower
}// end void loop()

Verifying the Code
With everything set up, plug the reader Arduino into the computer and start the serial monitor. The reader prints the
count when pin 2 transitions low, decrementing or incrementing the count depending on the incoming signal. The
sensor Arduino will send one-half of the gray code per button press. If a button is held down, a continuous signal will
be sent at a maximum rate of 208ms, as defined in the code. When the code is running and the buttons are not being
pressed, the Arduino will be held in the last state. Using this sensor simulation is very helpful in debugging control
code for robots CNC or any system using control loops.

Note ■ if an oscilloscope is not available to visualize what happens in the sensor code, increase all the delays to about
200ms and replace the reader with two leDs.

Serial Sensors
Serial communication is one of the cornerstone communication types in computer engineering, and many sensors
communicate via this method. Serial sensors are capable of sending and receiving more information than analog
sensors by sending data by the byte. Setting up a simulated serial sensor is simple on the Arduino using the built-in
serial functions or with software serial. The trick is matching the baud rate and the actual data being sent; the
specifications should be available on the sensor’s data sheet. It is recommended that software serial be used so that
the other serial connection is still available for control and monitoring.

Outputting Serial Data
The sensor for this section is the blue Parallax RFID reader that transmits serial at a baud of 2400. The RFID reader
reads special tags that contain a 40-bit identifier that is transmitted as ten hexadecimal numbers converted to plain
ASCII. A byte with a value of 10 is sent at the beginning of the tag code and is ended by a byte value of 13; there is
also a pin to activate the RFID reader. The code for the Arduino to access the RFID information is available at
http://arduino.cc/playground/Learning/PRFID, in the section modified by Worapoht K. using software serial.
Upload Listing 6-6 to the Arduino that will be used for retrieving the RFID data.

Listing 6-6. Worapoht K. Code with Reworked Comments

#include <SoftwareSerial.h>
int val = 0; // temporary holder
char code[10]; // the Tag ID
int bytesread = 0; // byte count
#define rxPin 8 // RFID reader SOUT pin
#define txPin 9 // no connection

void setup() {
 Serial.begin(2400); // Hardware serial for Monitor 2400bps

http://arduino.cc/playground/Learning/PRFID

Chapter 6 ■ Simulating SenSorS

122

 pinMode(2,OUTPUT); // RFID ENABLE pin
 digitalWrite(2, LOW); // Activates RFID reader
} // end void setup()

void loop() {
 SoftwareSerial RFID = SoftwareSerial(rxPin,txPin);
 RFID.begin(2400);
 if((val = RFID.read()) == 10) { // check for header
 bytesread = 0;
 while(bytesread<10) { // read 10-digit code
 val = RFID.read();
 if((val == 10)||(val == 13)) { // check for a value of 10 or 13
 break; // stop reading
 }
 code[bytesread] = val; // add the digit
 bytesread++; // ready to read next digit
 }
 if(bytesread == 10) { // if 10-digit read is complete
 Serial.print("TAG code is: "); // possibly a good TAG
 Serial.println(code); // print the TAG code
 }
 bytesread = 0; // reset byte count
 delay(500);
 }
} // end void loop()

As shown in Figure 6-6, this simulated sensor setup is very similar to the actual sensor: pin 2 on both Arduinos
are connected together, and pin 8 on the reader is connected to pin 9 on the sensor Arduino. Also, the 5V and GND
need to be connected.

Figure 6-6. RFID serial setup

Chapter 6 ■ Simulating SenSorS

123

Listing 6-7 shows the code for simulating the RFID.

Listing 6-7. RFID Simulator

#include <SoftwareSerial.h>

void setup() {
 Serial.begin(2400); // Hardware serial for Monitor 2400bps
 pinMode(2,INPUT);
} // end void setup()

void loop() {
 SoftwareSerial RFID = SoftwareSerial(8,9); // pin 8 noconnect, pin 9 transmit
 RFID.begin(2400);
 if(LOW == digitalRead(2)) { // does the sensor need to be active
 RFID.write(10); // transmit header
 RFID.write("HelloWorld"); // transmit Tag ID code
 RFID.write(13); // transmit end
 }
} // end void loop()

Verifying the Code
Get everything uploaded and connected, and start the serial monitor running at 2400 baud. The code for simulating
the RFID sensor sets up software serial at 2400 baud, and then waits for pin 2 to be low before sending the data
sequence. The data that is sent to the reader Arduino starts with a byte value of 10 and ends with a byte value of 13.
HelloWorld will then be printed to the serial monitor TAG code is:. HelloWorld just happened to be ten characters
and can be replaced with actual tag codes. Sometimes incoherent data will be printed. This is caused by the serial
not being synchronous. More code is needed to verify the data, but for this application, it just needs to get at least one
good RFID code to compare to the list of valid codes to perform an action.

I2C
The communication method I2C, also known as two-wire, is a synchronous serial communication method using
one wire for a clock signal and another wire for data. I2C is a cousin to basic serial, with a few differences in what the
hardware does during communications. Sensors that use this type of communication can handle a wide variety of
data, devices, and commands. Sensors that communicate via I2C can have multiple functions measuring multiple
activities on the same package. The sensor that will be simulated in this section is the SRF10 Ultrasonic Ranger Finder.
Its code is included in the Arduino IDE by selecting File ➤ Examples ➤ Wire ➤ SFRRange_reader, and should be
loaded on the Arduino to be used as the reader.

I2C data transfers happen on one wire, meaning that one only device can transmit at a time; however, more
than two devices can be connected together with just two wires. In most common I2C setups, there is one master
device that is the receiver of the data and the controller of what devices communicate. Arduino includes a library
that implements this communication, and for most basic setups, it works well, especially when used on the master
device. The library lacks a bit of finesse that is required when attempting to simulate the workings of an I2C
sensors, however.

Getting the best control to simulate sensors using I2C requires manipulating the hardware registers; this method of
setting up the I2C bus is a bit more complicated, but isn’t difficult once you have a bit of understanding of the registers.

Note ■ refer to section 22.5 in the atmega 328p data sheet (pages 223–247); this section gives an overview of the
i2C module included in the arduino’s microcontroller.

Chapter 6 ■ Simulating SenSorS

124

I2C communications happen on analog pin 5 for the shared clock (SCL) and analog pin 4 for data (SDL). TWAR,
TWCR, TWDR, and TWSR are the four registers that are used to set up I2C slave mode. TWBR is a fifth register in the
I2C hardware and is unimportant for slave applications. TWBR is used in master mode to control the SCL speed.
SREG is the one register outside the I2C module that will have to be modified for this section. Registers work the
same way as variables in that all the manipulation methods for variables work the same way. The register names have
already been defined by the main libraries used by the Arduino IDE; declarations to use them are not necessary. All
the registers used in this section are 1 byte in size. Some of the registers are for data and others are for control.

The TWCR Register
The TWCR register is the two-wire control register; this is what defines the main working of the I2C communications.
Each bit in the byte of the TWCR register controls a different function within the hardware; the name of the bit
describes its location within the byte.

To put the Arduino into slave mode, you must set the TWI Enable Acknowledge (TWEA) and •	
TWI Enable (TWEN) bits to 1 in the TWCR. TWEN (bit 2) activates the I2C hardware, and
TWEA (bit 6) tells the hardware to send acknowledgments when appropriate; if the TWEA is
not set, this device will not respond to other devices trying to communicate.

TWI Interrupt (TWINT) (bit 7) and TWI Interrupt Enable (TWIE) (bit 0) are the other two bits •	
that are important in the TWCR and are used for software control. TWINT is a flag that gets set
to 1 when there is something that needs attention from the software; the software then has to
clear the flag by writing 1 to the TWINT bit when it’s finished handling what needed attention.
You can also set up TWINT in conjunction with TWIE as an internal interrupt.

Data being transferred on the I2C is time sensitive, so it is wise to set the communications to be handled using the
internal interrupts on the Arduino. This is accomplished by setting the TWIE and the global interrupt enable in the SREG
to on. SREG needs to be set with a bitwise OR (|) mask so that the other bits are not manipulated, and has to be reset every
time an interrupt happens. When the TWINT flag gets set to 1 by the hardware, the interrupt is triggered. The interrupt
service routine (ISR(vector)) is run when an interrupt is triggered; the ISR() works very similarly to a normal function
such as Setup() or Loop(). ISR() can be written directly in the Arduino sketch with no preceding information, but a
vector is required. A vector is a name that describes the interrupt that the ISR responds to for code execution.

Note ■ a reference of the vector names used in the aVr libraries that the arduino is built upon is located at
www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html. the vector name that is needed
for i2C interrupt on the arduinos with the 328p chips is TWI_vect.

The TWAR Register
The last register that has to be set to get the I2C slave to respond to information moving on the bus is an address. The
address is set in the TWI Address Register (TWAR). The top seven bits (7-1) are the address; bit 0 tells the device that
it is OK to respond to the general call address. The general call address is 0, and when the master sends this address,
every device set to have a response will respond. When the address is set to the TWAR register, it has to shift to the left
by 1, making 126 unique devices that can be on the I2C bus.

The TWDR Register
The TWI Data Register (TWDR) is where all the data bytes will go through. When this register is written (TWDR = FOO;),
 a data transfer will begin. To read the incoming data, read the data register into a variable (FOO = TWDR). I2C uses

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

Chapter 6 ■ Simulating SenSorS

125

unique start and stop values to encapsulate the data; this leaves a full byte for data transmission. This is unlike plain
serial, where a portion of a byte is used to denote the beginning and end of larger data amounts, as in the previous
example. The TWI Status Register (TWSR) makes it easier to send larger variable types and keep them in proper order.

The TWSR Register
The TWSR register contains information about what is happening on the I2C bus, such as data direction, errors, and
transmission requests. Reading the TWSR is important for controlling the software; there is a list of status codes in the
TWI module section of the Atmel data sheet. 0X80 and 0XA8 are the codes of interest for simulating the sensor. 0X80
tells the code that there is incoming data that needs to be read, and 0XA8 tells the sensor to transmit its data. There
are three bits in this register—located from 2 to 0—that are not important for the running of the slave and need to be
masked out (0b11111000) by a bitwise AND (&); the status codes are calculated for this and do not need any shift.

Outputting I2C Data
Setting up the example as shown in Figure 6-7 involves using two pull-up resistors to make sure the SCL and SDA line
are high in accordance with the requirements of I2C. The Arduinos are connected through analog pins 4 and 5, as well
as ground and power. The code in Listing 6-8 is uploaded to the Arduino that is to be used as the sensor.

Figure 6-7. I2C setup

The code demonstrates how to implement I2C communications by directly manipulating hardware registers
while combining direct AVR C and Arduino code. For clarity, the value that is set to the registers is in binary, matching
the position of the bit in the register. The code increments manipVar each time the loop function is run. The LED on the
board turns on or off depending on the command received from the master. All the communication happens in
the ISR() function; the data manipulated in the interrupt has to be global; it is not possible to pass data to the ISR()
function, because it is called from hardware, not code.

Chapter 6 ■ Simulating SenSorS

126

Listing 6-8. I2C Simulated Sensor Code

byte address = 112; // address of this sensor
unsigned int manipVar = 0; // variable to change data
byte bytessent = 2 ; // number of bytes to send
byte bytestosend[2] ; // prepare data to send
byte command = 0 ; // command storage

void setup() {
TWAR = (address << 1) | 0b00000001; // set address and general call response
TWCR = 0b01000101; // set TWEA TWEN and TWIE to 1
SREG |= 0b10000000; // enable global interrupt
pinMode(13 , OUTPUT);
} //end void setup()

void loop() {
 if (command == 0x50){ // turn ON LED to a command 0x50
 digitalWrite (13 , HIGH);
 }
 if (command == 0x02){ // turn OFF LED to a command 0x02
 digitalWrite (13 , LOW);
 }
 manipVar++; // main variable to manipulate outdata two bytes
 bytestosend [0] = manipVar; // prepare manipVar in to HI and LOW bytes
 bytestosend [1] = manipVar >> 8 ; // manipVar HI
 delay (250); // something else to do while wating
} // end void loop()

ISR (TWI_vect){ // interrupt service routine set to vector
 if (TWCR & (1 << TWINT)) { // double-check for proper interrupt
 if ((TWSR & 0b11111000) == 0x80){ // incoming data
 command = TWDR; // copy command data for future use
 TWCR = 0b11000100; // reset back to original config
 }
 if ((TWSR & 0b11111000) == 0xA8) { // request for outgoing data
 while (bytessent > 0){ // send bytes to master
 bytessent--;
 TWDR = bytestosend [bytessent]; // send data from HI to LOW byte
 TWCR = 0b11000101; // reset for each send
 delay (5); // pause a moment on send
 }
 if (bytessent == 0){ // reset byte count check to see if empty
 bytessent = 2;
 }
 } // end if ((TWSR & 0b11111000) == 0xA8)
 TWCR = 0b11000101; // one last reset to make sure
 SREG |= 0b10000000; // reenable interrupt
 } // end if (TWCR & (1 << TWINT))
} // end ISR (TWI_vect)

Chapter 6 ■ Simulating SenSorS

127

Verifying the Code
With everything set up and loaded onto the respective Arduinos, plug the reader into the USB and start the serial
monitor. Consecutive numbers should print to the screen, counting up, and the simulated sensor’s LED should blink
when the master sends specific commands. Using direct register manipulation to replicate sensors allows maximum
control of the I2C interface that the library does not currently allow.

Note ■ Chapter 10 on multi processing, covers methods of Spi communication that can be applied for sensor simulation.

Summary
The techniques described in this chapter are not limited to sensors, and can be applied to other systems that move
data from one component to another. This chapter focused on the connection of the sensor to the Arduino, because
that is the most difficult hurdle in simulating sensors.

When writing code to simulate sensors, work slowly and tackle one part of the sensor at a time to avoid
complications. Also take the time to practice writing code to simulate sensors that are readily available for verification
against the code you created.

129

Chapter 7

PID Controllers

Proportional-Integral-Derivative (PID) is a cornerstone algorithm in control theory. The PID algorithm smoothly and
precisely controls a system, such as temperature in an oven or the position of a control surface on an airplane. A PID
controller works by calculating an amount of error based upon the difference between a set value and a feedback
value, and provides an adjustment to the output to correct that error. The control and decision of the adjustment is
done in math instead of pure logic control such as if...else statements. PID controllers have many types of uses,
including controlling robotics, temperature, speed, and positioning. The basics, coding setup, and tuning of PID
controllers for the Arduino platform are discussed in this chapter.

The Mathematics
Setting up a PID controller involves constantly calculating an algorithm. The following equation is the sum of the
three parts of PID: proportional, integral, and derivative. The equation for the PID algorithm attempts to lower
the amount of difference between a setpoint (the value desired) and a measured value, also known as the feedback.
The output is altered so that the setpoint is maintained. PID controllers can easily work with systems that have
control over a variable output.

The variables of the equation are

•	 E: The calculated error determined by subtracting the input from the setpoint (Sp – Input)

•	 t: The change in time from the last time the equation has run

•	 Kp: The gain for the proportional component

•	 Ki: The gain for the integral component

•	 Kd: The gain for the derivative component

The Proportional Statement
The P in PID is a proportional statement of the error, or the difference between the input and the setpoint value. Kp is
the gain value and determines how the P statement reacts to change in error; the lower the gain, the less the system
reacts to an error. Kp is what tunes the proportional part of the equation. All gain values are set by the programmer or
dynamically via a user input. The proportional statement aids in the steady-state error control by always trying to keep
the error minimal. The steady state describes when a system has reached the desired setpoint. The first part of the
proportional code will calculate the amount of error and will appear something like this:

error = setpoint – input ;

Chapter 7 ■ pID Controllers

130

The second part of the code multiplies the error by the gain variable:

Pout = Kp * error;

The proportional statement attempts to lower the error by calculating the error to zero where input = setpoint.
A pure proportional controller, with this equation and code, will not settle at the setpoint, but usually somewhere
below the setpoint. The reason the proportional statement settles below the setpoint is because the proportional
control always tries to reach a value of zero, and the settling is a balance between the input and the feedback. The
integral statement is responsible for achieving the desired setpoint.

Note ■ If Kp is set too high, the system will become unstable. the gain value when this happens is different for
each system.

The Integral Statement
The I in PID is for an integral; this is a major concept in calculus, but integrals are not scary. Put simply, integration
is the calculation of the area under a curve. This is accomplished by constantly adding a very small area to an
accumulated total. For a refresher of some calculus, the area is calculated by length × width; to find the area under a
curve, the length is determined by the function’s value and a small difference that then is added to all other function
values. For reference, the integral in this type of setup is similar to a Riemann sum.

The PID algorithm does not have a specific function; the length is determined by the error, and the width of
the rectangle is the change in time. The program constantly adds this area up based on the error. The code for the
integral is

errorsum = (errorsum + currenterror) * timechange;
Iout = Ki * errorsum ;

The integral reacts to the amount of error and duration of the error. The errorsum value increases when the input
value is below the setpoint, and decreases when the input is above the setpoint. The integral will hold at the setpoint
when the error becomes zero and there is nothing to subtract or add. When the integral is added to proportional
statement, the integral corrects for the offset to the error caused by the proportional statement’s settling. The integral
will control how fast the algorithm attempts to reach the setpoint: lower gain values approach at a slower rate;
higher values approach the setpoint quicker, but have the tendency to overshoot and can cause ringing by constantly
overshooting above and below the setpoint and never settling. Some systems, like ovens, have problems returning
from overshoots, where the controller does not have the ability to apply a negative power. It’s perfectly fine to use just
the PI part of a PID equation for control, and sometimes a PI controller is satisfactory.

Note ■ the integral will constantly get larger or smaller depending on how long there is an error, and in some cases
this can lead to windup. Windup occurs when the integral goes outside the feasible output range and induces a lag. this
can be corrected by checking if Iout goes outside the output range. to correct for this, check Iout and reset it to the
bound it exceeded.

Chapter 7 ■ pID Controllers

131

The Derivative Statement
The D in PID is the derivative, another calculus concept, which is just a snapshot of the slope of an equation. The
slope is calculated as rise over run—the rise comes from the change in the error, or the current error subtracted from
the last error; the run is the change in time. When the rise is divided by the time change, the rate at which the input is
changing is known. Code for the derivative component is

Derror = (Error – lasterror) / timechange ;
Dout = Kd * Derror ;

or

Derror = (Input – lastinput) / timechange ;
Dout = Kd * Derror ;

The derivative aids in the control of overshooting and controls the ringing that can occur from the integral. High
gain values in the derivative can have a tendency to cause an unstable system that will never reach a stable state. The
two versions of code both work, and mostly serve the same function. The code that uses the slope of the input reduces
the derivative kick caused when the setpoint is changed; this is good for systems in which the setpoint changes
regularly. By using the input instead of the calculated error, we get a better calculation on how the system is changing;
the code that is based on the error will have a greater perceived change, and thus a higher slope will be added to the
final output of the PID controller.

Adding It All Up
With the individual parts calculated, the proportion, integral, and the derivative have to be added together to achieve
a usable output. One line of code is used to produce the output:

Output = Pout + Iout + Dout ;

The output might need to be normalized for the input when the output equates to power. Some systems need
the output to be zero when the setpoint is achieved (e.g., ovens) so that no more heat will be added; and for motor
controls, the output might have to go negative to reverse the motor.

Time
PID controllers use the change in time to work out the order that data is entered and relates to when the PID is
calculated and how much time has passed since the last time the program calculated the PID. The individual system’s
implementation determines the required time necessary for calculation. Fast systems like radio-controlled aircraft
may require time in milliseconds, ovens or refrigerators may have their time differences calculated in seconds, and
chemical and HVAC systems may require minutes. This is all based on the system’s ability to change; just as in physics,
larger objects will move slower to a given force than a smaller ones at the same force.

There are two ways to set up time calculation. The first takes the current time and subtracts that from the last
time and uses the resulting change in the PID calculation. The other waits for a set amount of time to pass before
calculating the next iteration. The code to calculate based on time is as follows and would be in a loop:

// loop
now = millis() ;
timechage = (now – lasttime);
// pid caculations
lasttime = now;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 7 ■ pID Controllers

132

This method is good for fast systems like servo controllers where the change in time is based on how fast the code
runs through a loop. Sometimes it is necessary to sample at a greater time interval than that at which the code runs
or have more consistency between the time the PID calculates. For these instances, the time change can be assumed
to be 1 and can be dropped out of the calculation for the I and D components, saving the continual multiplication
and division from the code. To speed up the PID calculation, the change in time can be calculated against the gains
instead of being calculated within the PID. The transformation of the calculation is Ki * settime and Kd / settime.
The code then looks like this, with gains of .5 picked as a general untuned starting point:

// setup
settime = 1000 ; // 1000 milliseconds is 1 second
Kp = .5;
Ki = .5 * settime;
Kd = .5 / settime;
// loop
now = millis() ;
timechage = (now – lasttime);
if (timechange >= time change){
 error = Setpoint – Input;
 errorsum = errorsum + error;
 Derror = (Input – lastinput);
 Pout = Kp * error;
 Iout = Ki * errorsum ;
 Dout = Kd * Derror ;
 Output = Pout + Iout + Dout ;
}

PID Controller Setup
Now that the math and the framework are out of the way, it is time to set up a basic PID system on an Arduino. This
example uses an RC low-pass filter (from Chapter 6) with an added potentiometer to simulate external disturbance.

Wiring the Hardware
Set up an Arduino as per Figure 7-1. After the Arduino is set up with the components, upload the code in Listing 7-1.

Chapter 7 ■ pID Controllers

133

Listing 7-1. Basic PID Arduino Sketch

float Kp = .5 , Ki = .5, Kd = .5 ; // PID gain values
float Pout , Iout , Dout , Output; // PID final ouput variables
float now , lasttime = 0 , timechange; // important time
float Input , lastinput , Setpoint = 127.0; // input-based variables
float error , errorsum = 0, Derror; // output of the PID components
int settime = 1000; // this = 1 second, so Ki and Kd do not need modification
void setup (){
 Serial.begin(9600); // serial setup for verification
} // end void setup (){

void loop (){
 now = millis() ; // get current milliseconds
 timechange = (now – lasttime); // calculate difference
 if (timechange >= settime) { // run PID when the time is at the set time
 Input = (analogRead(0)/4.0); // read Input and normalize to output range
 error = Setpoint – Input; // calculate error
 errorsum = errorsum + error; // add curent error to running total of error
 Derror = (Input – lastinput); // calculate slope of the input
 Pout = Kp * error; // calculate PID gains
 Iout = Ki * errorsum ;
 Dout = Kd * Derror ;
 if (Iout > 255) // check for integral windup and correct
 Iout = 255;

Parts:
100 Resistor
200K Potentiometer
680 F Electrolytic Capacitor

Figure 7-1. PID example circuit setup

Chapter 7 ■ pID Controllers

134

 if (Iout < 0)
 Iout = 0;
 Output = Pout + Iout + Dout ; // prep the output variable
 if (Output > 255) // sanity check of the output, keeping it within the
 Output = 255; // available output range
 if (Output < 0)
 Output = 0;
 lastinput = Input; // save the input and time for the next loop
 lasttime = now;
 analogWrite (3, Output); // write the output to PWM pin 3
 Serial.print (Setpoint); // print some information to the serial monitor
 Serial.print (" : ");
 Serial.print (Input);
 Serial.print (" : ");
 Serial.println (Output);
 } // end if (timechange >= settime)
} // end void loop ()

Verifying the Code
Run the code uploaded to the Arduino and start the serial monitor. The code will print one line containing the
Setpoint : Input : Output values, and print one line per iteration of the running PID about every second. The
system will stabilize around a value of the setpoint—the first value of every printed line in the serial monitor. However,
because of the inherent noise in the RC filter, it will never settle directly at the setpoint. Using an RC circuit is one
of the easier ways to demonstrate a PID controller in action, along with the noise simulating a possible jitter in the
system. The potentiometer is used to simulate a negative external disturbance; if the resistance on potentiometer is
increased, the controller will increase the output to keep the input at the setpoint.

Note ■ If the arduino were fast enough and had a higher precision on the pWM, it would be possible to eliminate the
jitter in the rC filter with a pID controller.

PID Tuner
To graphically represent the different controllers in real time and on actual hardware, there is an app called PID tuner
available at the books github repository (https://github.com/ProArd/Pidtuner). PID Tuner implements the P, I, and
D types of controllers with the openFrameworks-and-Firmata combination (as in Chapter 3). Figures 7-2 through 7-4
were made from the PID Tuner app (see the next section, in which we’ll start to examine different types of controllers
in more detail). The PID Tuner application was developed to provide a functional graphical front end to the Arduino
hardware and implement a few control algorithms for testing and tuning purposes. With PID Tuner, it is possible to
test many different gain values without having to upload a new sketch to the Arduino each time.

After downloading the file, do the following:

1. Unzip it to the openFrameworks apps /myapps folder.

2. Change the serial port connection to connect to an Arduino configured as shown in
Figure 7-1 and loaded with the standard Firmata sketch.

3. Open the PID folder and compile the project.

https://github.com/ProArd/Pidtuner

Chapter 7 ■ pID Controllers

135

Once the PID Tuner is compiled and running, and the Arduino is set up as per Figure 7-1, the program controls
the PWM pin for the PID controller and simulates a linear rise and fall time for both an ON/OFF and a DEAD BAND
controller; the application uses single key commands to set tuning.

Keys •	 o, y, and h turn on or off a single controller type:

•	 o = PID

•	 y = ON/OFF

Keys •	 c, r, and z clear, reset, and zero the graph:

•	 c = clear

•	 r= reset

•	 z = zero

Keys •	 S and s increase and decrease the first setpoint, and A and a increase and decrease the
second setpoint that is used for the DEAD BAND controller.

Keys •	 M and m increase and decrease the PWM output on the Arduino.

Keys •	 p, i, and d turn on and off the individual statements of the PID controller.

Keys •	 Q, W, and E increase the individual gain values for the PID controller in .01 increments.
q, w, and e decreases the gains:

•	 Q = Kp + .01

•	 q = Kp – .01

•	 W = Ki + .01

•	 w = Ki – .01

E = Kd + .01•	

e = •	 Kd – .01

The spacebar starts and stops the reading of controllers and pauses the graph’s output.•	

Note ■ as of the writing of this book, the pID tuner app is in preliminary development; it may be a bit buggy, and it
requires the connection to be manually changed in the code. the application also runs at the fastest running speed and
assumes a nonadjustable time of 1.

Comparing PID, DEAD BAND, and ON/OFF Controllers
With a basic PID controller set up and running, it is time to discuss a couple of other common control methods and
how they compare to PID. Both DEAD BAND and ON/OFF controllers are from the logic controller family, meaning
they use logic controls such as if/else statements to determine how to change the output.

The DEAD BAND controller is common for thermostats, where a high and a low value are set. If the input is
below the low value, the controller turns on the output, and vice versa for the high value, creating a range that output
must be kept within.

Chapter 7 ■ pID Controllers

136

The ON/OFF controller is much like the DEAD BAND controller, but uses only a single setpoint. When the input
is below the value, the output is turned on, and then it is turned off when above the setpoint.

Figure 7-2 is the graph of a PID using the RC filter; the gains are equal to .5 for this particular tuning and setup.
There is a slight overshoot produced, but the system quickly reaches a steady state, with an approximate steady-state
error of +/–4. This is normal for the noise produced in the system.

Figure 7-3 demonstrates an ON/OFF controller that has a higher rise and a slower fall per program step; this
simulates how an thermostat might work. This controller is set up with the same components as Figure 7-2, just using
different code. One of the biggest comparisons between the ON/OFF and the PID is the steady state contains much
more disturbance and there is no direct control on how long the system will stay at the setpoint.

Figure 7-2. A graph of a PID setup with an RC low-pass filter

Chapter 7 ■ pID Controllers

137

Figure 7-4 shows a DEAD BAND controller using the same setup as the preceding graphs. The DEAD BAND
is formed by a high setpoint and a low setpoint. The advantage this provides over a basic ON/OFF is that the cycle
frequency is decreased to lower the amount of switching of the state either on or off. This is the average controller style
for HVAC systems, where turning on and off can lead to higher power consumption and increased mechanical fatigue.

Figure 7-4. A DEAD BAND controller

Figure 7-3. An ON/OFF controller

Chapter 7 ■ pID Controllers

138

The main disadvantages of the both of these logic controllers is in the control of the output being discrete.
With the output control being just on or off, there is no prediction on the change of the output that will allow
us to determine how far they are from the setpoints. However, logic controllers are usually easier to set up and
implement than PID controllers, which is why it is more common to see these controllers in commercial products.
PID controllers, though, have a distinct advantage over logic controllers: if they are implemented properly, PID
controllers won’t add more noise to a system and will have tighter control at a steady state. But after the math, it is the
implementations that make PID controllers a bit more difficult to work with.

PID Can Control
There are many ways to implement a PID with a proper match to a sensor and an output method. The math will
remain reliability constant. There may be a need for some added logic control to achieve a desired system, however.
This next section provides a glimpse of other PID implementations and some possible ideas.

It is common for PID controllers to be used in positioning for flight controls, balancing robots, and some CNC
systems. A common setup is to have a motor for the output and a potentiometer for the input, connected through a
series of gears, much the same way a servo is set up. Another common implementation is to use a light-break sensor
and a slotted disk as the input, as would be found in a printer. This implementation requires some extra logic to
count, store, and manipulate steps of the input. The logic would be added to control the motor’s forward or reverse
motion when counts are changed. It is also possible to use rotary encoders or flex sensors for the input. Many types
of physical-manipulation system can be created from electric-type motors and linear actuators—for example, air and
hydraulic systems.

Systems that control speed need sensors that calculate speed to power output, such as in automotive cruise
control, where the speed is controlled by the throttle position. In an automotive application, a logic controller would
be impractical for smoothly controlling the throttle.

Controlling temperature systems may require other logic to control heating and cooling elements, with discrete
output such as relays. PID controllers are fairly simple to plan when the output is variable, but in systems that provide
only on-or-off output, this planning can be more complicated. This is accomplished in much the same way as PWM
charges a compositor to produce a voltage output that an ADC can read. The PID controller needs a bit of logic to
control the time at which the element is turned on. With temperature-based PID controllers, the gains may have to be
negative to achieve a controller that cools to a setpoint.

With a proper type of sensor and a way to control output, a PID can be implemented for chemical systems, such
as controlling the pH value of a pool or hot tub. When dealing with systems that work with chemicals, it is important
that the reaction time is taken into account for how and when the reagents are added.

Other PID systems can control flow rates for fluids, such as using electric valves and moisture meters to control
watering a garden or lawn. If there is a sensor that can measure and quantify, and a way to control, a PID can be
implemented.

Tuning
The tuning of a PID can be where most of the setup time is spent; entire semesters can be spent in classes on how to
tune and set up PID controllers. There are many methods and mathematical models for achieving a tune that will
work. In short, there is no absolute correct tuning, and what works for one implementation may not work for another.
How a particular setup works and reacts to changes will differ from one system to another, and the desired reactions of
the controller changes how everything is tuned. Once the output is controllable with the loopback and the algorithm,
there are three parameters that tune the controller: the gains of Kp, Ki, and Kd. Figures 7-5 through 7-7 show the
differences between low gain and high gain using the same setup from earlier in the chapter.

The proportional control gains control how aggressively the system reacts to error and the distance from the
setpoint at which the proportional component will settle. On the left of Figure 7-5, using a gain of 1, the system
stabilizes at about 50 percent of the setpoint value. At a gain of 7 (the right side of Figure 7-5), the system becomes
unstable. To tune a decent gain for a fast-reacting system, start with the proportion, set the integral and the derivative

Chapter 7 ■ pID Controllers

139

to zero, and increase the Kp value until the system becomes unstable; then back off a bit until it becomes stable again.
This particular system becomes stable around a Kp value of 2.27. For a slower system or one that needs a slower
reaction to error, a lower gain will be required. After the proportional component is set, move on to the integral.

Figure 7-6 demonstrates the addition of the integral component, making a PI controller. The left side of the figure
shows that a lower Ki gain produces a slower controller that approaches the setpoint without overshoot. The right
side of the figure, with a gain of 2, shows a graph with a faster rise, followed by overshoot and a ringing before settling
at the setpoint. Setting a proper gain for this part is dependent on the needs of the system and the ability to react to
overshoot. A temperature system may need a lower gain than a system that controls positing; it is about finding a
good balance.

The derivative value is a bit more difficult to tune because of the interaction of the other two components. The
derivative is similar to a damper attempting to limit the overshoot. It is perfectly fine omit the derivate portion and simply
use a PI controller. To tune the derivative, the balance of the PI portions should be as close as possible to the reaction
required for the setup. Once you’ve achieved this, then you can slowly change the gain in the derivative to provide some
extra dampening. Figure 7-7 demonstrates a fully functional PID with the PID Tuner program. In this graph, there is a
small amount of overshoot, but the derivate function corrects and allows the setpoint to be reached quickly.

Figure 7-5. Proportional control: Kp = 1 (left) and Kp = 7 (right)

Figure 7-6. Proportional integral control: Kp = .5; Ki = .1 (left) and Ki = 2 (right)

Chapter 7 ■ pID Controllers

140

PID Library
There is a user-made library available from Arduino Playground that implements all the math and control for setting
up a PID controller on an Arduino (see www.arduino.cc/playground/Code/PIDLibrary/). The library makes it simple
to have multiple PID controllers running on a single Arduino.

After downloading the library, set it up by unzipping the file into the Arduino libraries folder. To use a PID
controller in Arduino code, add #include <PID_v1.h> before declaring variables Setpoint, Input, and Output. After
the library and variables are set up, you need to create a PID object, which is accomplished by the following line
of code:

PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);

This informs the new PID object about the variables used for Setpoint, Input, and Output, as well as the gains
Kp, Ki, and Kd. The final parameter is the direction: use DIRECT unless the system needs to drop to a setpoint.

After all of this is coded, read the input before calling the myPID.Compute() function.

PID Library Functions
Following is a list of the important basic functions for the PID library:

•	 PID(&Input, &Output, &Setpoint, Kp, Ki, Kd, Direction): This is the constructer
function, which takes the address of the Input, Output, and Setpoint variables, and the
gain values.

•	 Compute(): Calling Compute() after the input is read will perform the math required to
produce an output value.

•	 SetOutputLimits(min ,max): This sets the values that the output should not exceed.

Figure 7-7. A full PID controller using an Arduino and an RC low-pass filter, with the following gains: Kp = 1.5, Ki =.8,
and Kd = .25

http://www.arduino.cc/playground/Code/PIDLibrary/

Chapter 7 ■ pID Controllers

141

•	 SetTunings(Kp,Ki,Kd): This is used to change the gains dynamically after the PID has been
initialized.

•	 SetSampleTime(milliseconds): This sets the amount of time that must pass before the
Compute() function will execute the PID calculation again. If the set time has not passed when
Compute() is called, the function returns back to the calling code without calculating the PID.

•	 SetControllerDirection(direction): This sets the controller direction. Use DIRECT
for positive movements, such as in motor control or ovens; use REVERSE for systems
like refrigerators.

Listing 7-2 is a modified version of the basic PID example using the PID library given at the library’s Arduino
Playground web page (www.arduino.cc/playground/Code/PIDLibrary/). The modifications to the sketch include a
serial output to display what is going on. There is a loss in performance when using the library compared to the direct
implementation of Listing 7-1, and the gains had to be turned down in comparison while using the same hardware
configuration as in Figure 7-1. The library can easily handle slower-reacting systems; to simulate this. a lager capacitor
can be used in the RC circuit.

Listing 7-2. PID Impemented with the PID Library

#include <PID_v1.h>

double Setpoint, Input, Output;
float Kp = .09;
float Ki = .1;
float Kd = .07;

// set up the PID's gains and link to variables
PID myPID(&Input, &Output, &Setpoint,Kp,Ki,Kd, DIRECT);

void setup(){

 Serial.begin(9600);
 // variable setup
 Input = analogRead(0) / 4; // calculate input to match output values
 Setpoint = 100 ;
 // turn the PID on
 myPID.SetMode(AUTOMATIC);
 // myPID.SetSampleTime(100);
}

void loop(){

 // read input and calculate PID
 Input = analogRead(0) / 4;
 myPID.Compute();
 analogWrite(3,Output);

 // print value to serial monitor
 Serial.print(Setpoint);
 Serial.print(" : ");

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.arduino.cc/playground/Code/PIDLibrary/

Chapter 7 ■ pID Controllers

142

 Serial.print(Output);
 Serial.print(" : ");
 Serial.println(Input);
}

Other Resources
For reference, here is a list of some online resources that will help expand your knowledge of the topics covered in this
chapter:

•	 http://wikipedia.org/wiki/PID_controller

•	 www.siam.org/books/dc14/DC14Sample.pdf

•	 www.arduino.cc/playground/Code/PIDLibrary/

•	 http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/

•	 http://sourceforge.net/projects/pidtuner/

Summary
This chapter provided the basic information for setting up a PID controller on an Arduino and listed some possible
applications. There are a lot of different setups that a PID can fulfill, and some can be difficult to achieve. However,
with some experimentation and exploration, you can learn to use PID controllers to your advantage.

http://wikipedia.org/wiki/PID_controller
http://www.siam.org/books/dc14/DC14Sample.pdf
http://www.arduino.cc/playground/Code/PIDLibrary/
http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/
http://sourceforge.net/projects/pidtuner/

143

Chapter 8

Android Sensor Networks

A sensor network is a series of stand-alone distributed sensor nodes that communicate information to a gateway for
retrieval. Sensor networks are used to monitor a wide range of conditions over a greater area than is possible with a
single sensor package. There is no typical setup for a sensor network; networks can range from just a few nodes to
hundreds, collecting any kind of imaginable data. Sensor networks are commonly used for industrial, security, and
scientific applications and can be set up as passive data collectors or active controllers. Sensor networks are not made
upon any single technology; they are made by integrating a variety of other technologies.

Arduino provides a great development platform for sensor packages for data logging and system control.
A sensor node is created when a sensor package is integrated with a communication method such as Bluetooth,
Ethernet, XBees, Cellular/GSM, or light to create a network. Arduino has been used to make sensor networks to
monitor environmental changes. For example, a distributed sensor network was created for the Fukushima nuclear
disaster to keep track of radiation levels. The network for Fukushima used a combination of GSM and Ethernet to
pass information from a Geiger sensor to a web service. Sebastian Alegria, a high-school student from Chile, created
another successful example of a sensor network to detect and warn of earthquakes. Sebastian’s system used a simple
seismometer to detect events that could cause destruction, his system passed the information through the Internet via
Ethernet and used a buzzer to provide a local warning.

Sensor networks don’t have to be as grand as these two examples, however. For example, they can be made to
monitor temperatures around a house or keep track of inventory being shipped out of a warehouse. When developing
a sensor network, keep in mind of all the development requirements and choose the sensors and communication
methods accordingly. For systems that monitor a smaller area, XBee modules can be used to avoid the need to
run cabling. In harsh environments, a network that uses cabling might be needed. XBee modules and cable-based
systems are great methods for creating stand-alone networks that don’t rely on other infrastructure systems but limit
the range in which a sensor network can feasibly be created. To increase a senor network to a range that can monitor
across a country or the world, it might be preferential to use an existing communication infrastructure, such as the
Internet or telephone.

Android is a useful platform to integrate into a sensor network because of the variety of roles it can fill, along with
its popularity and ease of development. Android can be used as a method to receive or send sensor information via a
web service. Bluetooth can be used to wirelessly obtain data from a factory’s sensor network. Android in conjunction
with the Open Accessory development kit can provide a portable method to retrieve data from a stand-alone sensor
network.

This chapter focuses on building a small sensor network that integrates XBees, Android, and Arduino. The sensor
network uses hardware that has been used in other chapters. The Mega ADK, SD breakout, XBee modules, XBee
adapters, and an Android device are all required for this chapter. openFrameworks, Eclipse, and Arduino IDEs will
also need to be available to complete the sensor network in this chapter.

Caution ■ This chapter uses concepts from and builds upon Chapters 3, 4, and 5. I recommend reading these chapters
(on openFrameworks, the Android ADK, and XBees, respectively) before continuing with this chapter.

ChApTer 8 ■ AnDroID SenSor neTworKS

144

Setting Up a Sensor Network
When starting the development of a sensor network, decide what information needs to be collected. This will help
when qualifying sensor types. After determining the information to be collected, make a list of the requirements
for the environment that the sensor network is to be deployed in. The environment has the biggest impact on what
technologies to use; in an urban environment, power may be more readily available than in a rural or wilderness
environment, where power may have to be generated or batteries extensively used. Wireless is probably the easiest
type of node to deploy, but may have some reliability issues in environments with high electromagnetic interference;
in such cases, shielded cabling may need to be run. The communication method also needs to not interfere with the
sensor readings. If RF information is being collected, wireless may have to be avoided or the interference may have to
be zeroed out of the information. In some special cases, fiber optics may be the best choice.

The sensor’s resolution is one factor that can determine the resolution of the whole network. The resolution can
also be determined by the collection rate required by the system being monitored, with the amount of data collected
to be sufficient for the application. The requirements need to be considered when starting to develop a sensor
network. Systems that monitor machinery may require continuous sensor output every few milliseconds or even
seconds, while networks measuring tidal flow may only need to be read every few minutes or even once an hour to
achieve sufficient resolution. Some other requirements to plan for are how the collected data will be processed. The
network will need sufficient processing power if the data needs to be processed in real time. The network will need to
store the data if it’s to be processed at a later time than when it is collected.

Sensor networks do not need to be complex or use a lot of hardware in the initial development stages. Usually
a sensor network has one gateway for the data and one to a few different node types to collect the data. Building a
sensor network can start with a one or two nodes and a gateway and be planned to be expandable. In the initial stages
of development, the passing of data is more important than the data itself. The data can be simulated to provide a
constant to compare how successful the data transmission is.

The example in this chapter sets up a simple sensor network that demonstrates the integration of some of the
technologies and concepts introduced in earlier chapters. The example is not a complete project to make a fully
working sensor network.

The example creates a simulated sensor node with three different sensors that transmit predefined data for each
sensor to the Mega ADK for logging and further retrieval by the Android device. The XBee modules are set up as router
and coordinator in API mode with a baud of 115200. The pan ID needs to match on both XBees, but there is no need
for the destination address to be set. The code implements a bit of error correction to ensure that the data is logged
properly to the SD card and the serial connections stay synced. The Android device will be set up to pull a log from the
Mega ADK and display the data via a graph. The Arduino connects the Android device, SD card, and XBee to create
a data gateway. The Arduino also responds to the sensor node to confirm data was received or that the packet was
malformed. Figure 8-1 shows the configuration of the Arduino Mega ADK.

ChApTer 8 ■ AnDroID SenSor neTworKS

145

As shown in Figure 8-1, the XBee module is connected to serial 3 on the Mega ADK; other connections are TX
to RX and RX to TX, with the 5V and GND pins connected accordingly. On the SD adapter, the DI and DO pins are
connected to the MOSI and MISO pins on the Mega ADK, CLK is connected to SCK, CS is connected to Arduino
pin 10, and CD is connected to pin 2.

Set up the Arduino Mega ADK as shown in Figure 8-1, with the XBee module configured as the router and
inserted in the serial adapter, and the coordinator plugged into the USB adapter. Individually testing each component
attached to the Mega ADK before developing the code is vital to ensure that the hardware will not present many
problems in the debugging stages. To test that the SD card can read and write, open the ReadWrite sketch in
File ➤Examples ➤ SD and add the line pinMode (53, OUTPUT); to make sure the slave select pin will not pull the
Arduino out of SPI master mode. Change the line if (!SD.begin(4)) to if "(!SD.begin(10))" to map the SD card
to the chosen slave-activation pin. Insert an SD card into the adapter and upload the ReadWrite sketch to the board.
Start the serial monitor at baud 9600 and check that the sketch successfully runs.

To test the XBee modules, open the software serial sketch example and modify it to accommodate the serial of
the Arduino Mega ADK by changing all occurrences of mySerial to Serial3. Before uploading the sketch, remove the
#include and SoftwareSerial code lines at the beginning of the program and change both baud rates to 115200 to
match the current XBee configuration. Once the programs is running on the Arduino, plug in the USB explorer to a
computer and start the X-CTU software, and try sending the HELLO packet from Chapter 5. The packet is

7E 00 13 10 01 00 00 00 00 00 00 FF FF FF FE 00 00 48 45 4C 4C 4F 7F

The packet should be entered into the packet assembly window in the terminal tab of the X-CTU software.
The packet should show up on the serial monitor with a few unreadable characters along with a readable “HELLO.”
You don’t need to test the Android ADK functionality if you’ve already completed the corresponding exercise in
Chapter 5. The coding can begin for the sensor network components once the XBee and the SD card have been
successfully tested.

Figure 8-1. Arduino setup for sensor log node

ChApTer 8 ■ AnDroID SenSor neTworKS

146

openFrameworks
openFrameworks is used for this setup to create an application to create and transmit known data as a simulated
sensor network over a single XBee module connected to a computer. As in Chapter 3, a program is created in a
C++ compiler such as Code::Blocks and is made of at least three source files. A copy of the empty example found in
openFrameworks directory/apps/myApps can be used as a base for the first part of the sensor network code. You
need to modify the main.cpp file to set the drawing window to a smaller size by changing the ofSetupOpenGL function
call to create a 276×276-pixel window. Change the call to match the following line of code: ofSetupOpenGL(&window,
276, 276, OF_WINDOW);.

testapp.cpp handles data creation and packet construction, responds to flow control, and graphically draws
and indicates what data is being sent. The testapp.cpp code can be replaced with the code from Listing 8-1. The
example is made of seven different functions. Part 1 sets up the serial connection declared by the serial object in
testapp.h. The serial is connected to the location of the USB serial adapter (COM or TTY, depending on the system)
and is connected at 115200 baud. The setup function initializes a destination address of a broadcast for this example,
as well as flags needed for program control. Three unsigned byte arrays of 256 bytes are filled with data created by a
sine wave–generation equation. The sine waves are zeroed at a value of 127. The sine wave follows the form
y = a + b sin(k(x – c)), where a is the vertical transformation, b is the amplitude, c sets the horizontal shift, and
k affects the period. The data generated will be drawn to the computer’s screen and sent over the XBee module to be
eventuality displayed on an Android device.

Listing 8-1. testApp.cpp, Part 1 of 7

#include "testApp.h"
void testApp::setup(){
 printf ("Start \n");
 serial.setup("/dev/ttyUSB0", 115200); // change to match where the Arduino is connected
 for (int i = 0; i < 256; i++){
 graph[i] = 127 + (100 * sin((1*(PI/127))*(i-0))); // sine functions
 graph1[i] = 127 + (75 * sin((2*(PI/127))*(i-10))); // normalized in a 256×256-value area
 graph2[i] = 127 + (50 * sin((3*(PI/127))*(i-40)));
 } // end data fill installation
 for (int i = 0; i < 10; i++){
 destADR[i] = 0x00; // set the 64-bit broadcast address
 } // end address fill
 destADR[6] = 0xFF; // set network broadcast address
 destADR[7] = 0xFF;
 destADR[8] = 0xFF;
 destADR[9] = 0xFE;
 point = 0; // zero data point indicator
 counts = 0; // used to delay packet send timing
 SensorsSent [0] = false; // packet flags
 SensorsSent [1] = false;
 SensorsSent [2] = false;
 FirstPacketsent = false;
} // end testApp::setup()

The next function is the loop that runs constantly during program execution. The update function waits for a
set time to pass before trying to send the each of the sensor’s data. The time is based upon the amount of times the
update function is run and will vary depending on the complexity of the code run. On average, the data is sent in
intervals of half a second. Each time a data packet is sent, the code waits for a reply of an “OK” or “BAD,” signifying

ChApTer 8 ■ AnDroID SenSor neTworKS

147

whether it should move on to the next packet or resend the last. Once all three sensors have been sent, the program
starts sending the next data position in the array. All three of the sensor’s data packets could be sent in one packet, but
for this demonstration they are split up to represent different nodes.

Listing 8-1. testApp.cpp, Part 2 of 7

void testApp::update(){
 unsigned char DatatoSend[3] ;
 if (counts == 500){
 printf ("sensor 1 \n");
 DatatoSend[0] = 'S';
 DatatoSend[1] = '1';
 DatatoSend[2] = point;
 DatatoSend[3] = graph[point];
 CreatePacket(DatatoSend, 4);
 WaitForReply();
 SensorsSent [0] = true;
 }
 if (counts == 1000){
 printf ("sensor 2 \n");
 DatatoSend[0] = 'S' ;
 DatatoSend[1] = '2' ;
 DatatoSend[2] = point;
 DatatoSend[3] = graph1[point] ;
 CreatePacket(DatatoSend , 4);
 WaitForReply();
 SensorsSent [1] = true;
 }
 if (counts == 1500){
 printf ("sensor 3 \n");
 DatatoSend[0] = 'S';
 DatatoSend[1] = '3';
 DatatoSend[2] = point;
 DatatoSend[3] = graph2[point] ;
 CreatePacket(DatatoSend , 4);
 WaitForReply();
 SensorsSent [2] = true;
 }
 if (SensorsSent [0] == true && SensorsSent [1] == true && SensorsSent [2] == true){
 printf ("reset counts move point \n");
 counts = 0;
 point++;
 SensorsSent [0] = false;
 SensorsSent [1] = false;
 SensorsSent [2] = false;
 }
 counts++;
 CheckForIncoming();
} // end testApp::update()

ChApTer 8 ■ AnDroID SenSor neTworKS

148

The last thing that the update function performs is to check for incoming data on the serial connection. Part 3 is
the function that performs the check for incoming packets. The function tries to capture a complete packet from the
XBee module and check to see if the packet has the correct checksum before attempting to read what the packet is
and performing an action based on the packet’s information. The capture length is calculated by the first two bytes
received after the packet start byte, not by the amount of available serial data. The buffer is cleared after each packet
is captured and read. To attempt to keep the serial data incoming constantly, the buffers are cleared and variables
reinitialized if an incoming packet is malformed.

Listing 8-1. testApp.cpp, Part 3 of 7

void testApp::CheckForIncoming(){
 incomingPacketChecksum = 0;
 incomingByteLen = 0;
 if (serial.available() && 0x7E == (incomingBuffer[0] = serial.readByte())){
 printf ("Incoming packet \n");
 incomingBuffer[1] = serial.readByte(); // pull packet length
 incomingBuffer[2] = serial.readByte();
 incomingByteLen = incomingBuffer[1] + incomingBuffer[2];
 for (int i = 3; i <= incomingByteLen + 3; i++){ // receive the rest of the packet's data
 incomingBuffer[i] = serial.readByte();
 incomingPacketChecksum += incomingBuffer[i]; // add byte to checksum calculation
 }
 incomingPacketChecksum = (0xFF - incomingPacketChecksum);
 incomingByteLen += 3;
 if (incomingByteLen > 0 &&
 incomingPacketChecksum == incomingBuffer[incomingByteLen + 1]){
 printf ("Has Corect Checksum \n");
 ReadPacket();
 serial.flush(true, true); // flush incoming and outgoing serial buffers
 }
 else {
 printf ("Check Sum Error\n");
 serial.flush(true, true);
 incomingByteLen = 0;
 incomingPacketChecksum = 0;
 for (int i = 0; i <= 80; i++){
 incomingBuffer[i] = 0;
 }
 } // end the error else statement
 } //end if (serial.available() && 0x7E ==...
} // end testApp::CheckForIncoming()

The function in part 4 reads the packet when called via a switch statement to determent the packet type and
associated method of reading. This function responds to three different packet types: an AT command response
packet, a transmit response, and a data packet and announces that the packet type is unknown in response to all other
packet types. The program uses data packets transmitted for the Arduino to determine if the packet was sent properly;
if the packet is returned “BAD,” the program resends the packet till an “OK” is returned. This is a simplified method of
error correction that is handled by the next function.

ChApTer 8 ■ AnDroID SenSor neTworKS

149

Listing 8-1. testApp.cpp, Part 4 of 7

void testApp::ReadPacket(){
 switch (incomingBuffer[3]){ // check packet type and perform any responses
 case 0x90:
 dataLength = incomingByteLen - 15; // reduce to just the data length to get the data
 for (int i = 0; i <= dataLength; i++){
 incomeData [i] = incomingBuffer[i+15]; // phrase out the data from the packet
 }
 if (dataLength == 2 && incomeData[0] == 'O' && incomeData[1] == 'K'){
 printf ("OKAY\n"); // set Okay flag true when a good reply is received
 ReplyOK = true;
 }
 if (dataLength == 3 && incomeData[0] == 'B' && incomeData[1] == 'A' &&
 incomeData[2] == 'D' && FirstPacketsent){
 ReplyOK = false; // make sure that the flag is false when a BAD notify is received
 printf ("BAD\n");
 serial.writeBytes (packetBuffer, lastPacketLength); // send last known packet
 WaitForReply(); // wait again for an okay
 }
 break;
 case 0x8B:
 printf ("Transmt Responce\n");
 break;
 case 0x88:
 printf ("Command response %X%X \n", incomingBuffer[8] , incomingBuffer[9]);
 break;
 default: // announce unknown packet type
 printf ("error: packet type not known\n");
 } // end switch
} // end testApp::ReadPacket()

In part 5, the WaitForReply function is called after sending a packet to the Arduino, and will remain in a loop,
constantly polling for new packets. The loop is complete when the reply comes back as a data packet containing an
“OK.” The program will stop everything else it is doing while in the loop; this could be mitigated with more complexity,
such as implementing a timeout. A recursive situation occurs when waiting for a good reply and a “BAD” packet is
received, because the wait for reply is called when the resend occurs. The recursive situation is not detrimental to the
running of the example and is completely exited when an “OK” is received. The recursive call can cause problems
in more complex situations, though, and needs to be handled differently—with the use of timeouts and more robust
packet-correction methods.

Listing 8-1. testApp.cpp, Part 5 of 7

void testApp::WaitForReply(){
 printf ("Wait for reply \n");
 ReplyOK = false;
 while (ReplyOK != true){
 CheckForIncoming();
 }
} // end testApp::WaitForReply()

ChApTer 8 ■ AnDroID SenSor neTworKS

150

Part 6 is the function to create and send the packets over the XBee network. A pointer of the data and the length
of the data that need to be sent are received when the function is called. The packet is created with the destination
address set in the setup function and the pointer containing the data to be sent out. The packet that is created is a
transmit request that has no frame ID to limit the number of packets that are worked with for this example. The frame
ID can be used in situations where the receiving XBee may fail or go out of range, telling the program whether the
packet was received or not. The transmit-reply packet that is generated by the XBee network does not inform the
program that the packet was properly received by the Arduino; that is why the “OK” and “BAD” packets are used. The
CreatePacket function calculates the checksum needed for the packet as the last step before sending. The function
saves the packet length for possible resending and sets the FirstPacketsent flag to true to tell other functions that
one packet has been sent; otherwise, the program will fail if a “BAD” packet is received before one packet has been sent.

Listing 8-1. testApp.cpp, Part 6 of 7

void testApp::CreatePacket(unsigned char *Outdata, int length){
 printf ("creating packet\n");
 packetBuffer[17+ length] = 0;
 packetBuffer[0] = 0x7E; // start byte
 packetBuffer[1] = 0; // 1st length byte will be zero with current limitations
 packetBuffer[3] = 0x10; // frame type
 packetBuffer[4] = 0; // frame ID
 for (int i = 5; i <= 14; i++){ // add addresses
 packetBuffer[i] = destADR[i-5];
 }
 packetBuffer[15] = 0; // set both options
 packetBuffer[16] = 0;
 for (int i = 0; i < length; i++){
 packetBuffer[i + 17] = Outdata [i]; // add data to packet
 printf ("graph: %X\n",packetBuffer[i+17]); // print sent data to debug console
 }
 packetBuffer[2] = 14 + length; // set the lower length byte
 for (int i = 0; i < packetBuffer[2]; i++){ // calculate the checksum
 packetBuffer[17+ length] = packetBuffer[17+ length] + packetBuffer[i+3];
 }
 // finish packet by adding checksum to the final position
 packetBuffer[17+ length]= 0xFF - packetBuffer[17+ length];
 serial.writeBytes (packetBuffer, (18 + length)); // send the packet
 lastPacketLength = 18 + length; // save last packet length
 FirstPacketsent = true; // flag that at least the first packet is sent
} // end testApp::CreatePacket

The finishing touch for the openFrameworks code, in part 7, is to create a visual display for quick verification
of the position and data being sent. The graph that is generated will be re-created on the Android device. Figure 8-2
shows the approximate graph that is generated using the data generated in the setup function. The draw function
is called by openFrameworks after the update function is run and has to generate the view from scratch every time
draw is run. The function generates the grid by outlining a 256-pixel area with a square by counting out a 32-pixel line
spacing using a for loop. The data is drawn by a for loop that will step through each array of data and draw a series
of lines segments connected together corresponding to the data contained in the array. There is a vertical line that
is drawn dynamically to indicate the position from which the code is sending data. The position of the data point is
incremented when all three simulated sensors have been sent.

ChApTer 8 ■ AnDroID SenSor neTworKS

151

Listing 8-1. testApp.cpp, Part 7 of 7

void testApp::draw(){
 ofBackground (50,50,50);
 ofSetLineWidth (1);
 ofSetColor(0,0,0);
 for (int i = 266; i > 9; i -=32){ // draw the grid
 ofLine(10,i,266,i);
 ofLine(i,10,i,266);
 }
 for (int i = 0; i < 255; i++){ // draw the data
 ofSetLineWidth (2);
 ofSetColor(0,255,0);
 ofLine (i+10,(266 - graph[i]) , i+11 , (266 -graph [i+1]));
 ofSetColor(255,255,0);
 ofLine (i+10,(266 - graph1[i]) , i+11 , (266 -graph1 [i+1]));
 ofSetColor(0,0,255);
 ofLine (i+10,(266 - graph2[i]) , i+11 , (266 -graph2 [i+1]));
 }
 ofSetColor(255,0,0);
 ofLine (10 + point, 10, 10 + point, 266); // draw the position line
 ofSetLineWidth (1);
 } // end testApp::draw()

The last thing before compiling the code is to declare variables and function prototypes in testApp.h. Listing 8-2
describes the class used for the program. For simplicity, a majority of the variables are declared within the class
definition. Listing 8-2 needs to replace the one created with the empty application. The code will need a preliminary
test before the rest of the project is complete. To test, temporarily comment out the three WaitForReply function calls

Figure 8-2. Graph visualization of data being sent

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

ChApTer 8 ■ AnDroID SenSor neTworKS

152

in the update function associated with the packet creation and sending. Compile and run the program, and the red
line should increment to a new position after three packets are sent. With the program running, upload the modified
software serial sketch to the Arduino Mega ADK that is set up with the connected, required hardware, and check for
data printing to the serial monitor. The data is in readable by humans in this from, but shows that the packets are
reaching the Arduino.

Listing 8-2. testApp.h

#pragma once
#include "ofMain.h"
class testApp : public ofBaseApp{
public:
 // variables and objects
 unsigned char graph[256], graph1[256], graph2[256];
 unsigned char point;
 int counts;
 bool SensorsSent [3];
 bool ReplyOK;
 bool FirstPacketsent;
 unsigned char incomingBuffer[80];
 unsigned char incomeData[64];
 int incomingByteLen;
 unsigned char incomingPacketChecksum;
 unsigned char destADR[10];

 unsigned char packetBuffer [80];
 int lastPacketLength;
 unsigned char dataLength;
 ofSerial serial;
 // openFrameworks-specific functions
 void setup();
 void update();
 void draw();
// sensor network functions to handle packets
 void CheckForIncoming();
 void WaitForReply();
 void ReadPacket ();
 void CreatePacket (unsigned char*, int);
}; // end class testApp

The Arduino
The Arduino is the main workhorse of this chapter’s example. The Arduino receives packets from other network
nodes and processes the information to be logged to an SD card to be eventually retrieved by an Android device.
The Arduino programming responds to good incoming data by generating an “OK” reply packet using the address
contained within the good incoming packets of the sending node. If a packet is malformed, a broadcast “BAD” packet
is sent to the network; the packet is a broadcast because it might not be possible to determine the address of the
sending node. Both reply packets keep the simulated sensor network that is made with openFrameworks moving
forward and sending data.

ChApTer 8 ■ AnDroID SenSor neTworKS

153

The Arduino program waits till the last sensor is received before writing the data to the SD card as a single buffer
line. The simple packet-correction method sometimes drops data instead of trying figure out what packets might be
missing. The amount of lost data needs to be determined; as a function of the requirements of some projects, it may
be more critical that all the data is received.

Listing 8-3 is divided into eight parts. Part 1 sets up most of the variables and libraries needed. Both SD.h and
AndroidAccessory.h are used to create the connection to the corresponding SPI devices. Input and output buffers are
set for both the serial XBee connection and the SD card read and write. The reply packet that signifies that a packet
was not received properly is set as a static byte array, as this packet will be the standard reply for malformed packets.
The “BAD” packet is not required to be generated every time it needs to be sent, unlike the “OK” reply packet, which is
generated dynamically every time. The SD card output buffer has a set amount of preformatting.

The data contained in the log file is essentially a four-byte string for each sensor: it contains the sensor name,
the location of the data in the array of the openFrameworks program, and the actual sensor data. The sensor data is
separated by a colon, and a double-colon separates each sensor. The data lines are ended with a carnage return and
linefeed character. Each of the remote sensors are designated as S1 through S3, and a local sensor location called L1
has been left in the array to allow for an optimal local sensor attached to the Mega ADK to be processed. A series of
Boolean flags are declared for program flow control: one flag contains a blink state to blink the LED and two flags are
for ADK connection status.

The last object created is the AndroidAccessory object and uses the same declaration as we used in Chapter 4.
As long as the default program has not been set on the Android device, programs associated with a particular
accessory name and ID will be given as an autorun option when connected. Using the same accessory lets you avoid
an unnecessary upload when starting to integrate the Android device into the sensor network, by allowing the ADK
monitor to easily be used as an option for debugging.

Listing 8-3. Data Logger and ADK Handler, Part 1 of 8

#include <SD.h> // must be included before AndroidAccessory.h
#include <AndroidAccessory.h>
 static byte badPacket[21] = {0x7E ,0x00 ,0x11 ,0x10 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,
 0x00 ,0xFF ,0xFF ,0xFF ,0xFE ,0x00 ,0x00 ,0x42 ,0x41 ,0x44 ,0x2D };
 byte OutPacketBuffer[80];
 byte incomingBuffer[80];
 int incomingByteLen;
 byte incomingPacketChecksum;
 byte sourceADR[10]; // source addresses holding
 byte incomeData [64]; // phrased data holder
 int dataLength; // length of data received
 byte SDinBuffer[34]; // SD buffer is 34 bytes to capture a whole data line
 byte SDoutBuffer[34] =
// pre-format used to contain the data to log
 {'S','1',':',0xFF,':',0xFF,':',':',
 'S','2',':',0xFF,':',0xFF,':',':',
 'S','3',':',0xFF,':',0xFF,':',':',
 'L','1',':',0xFF,':',0xFF,':',':', 0x0A,0x0D};
 int ERRcount = 0;
 int IcomingTime = 0;
 boolean Blink = LOW; // blink state holder
 bool lastReply = false; // false bad, true good
 boolean ADKisConnected = false; // so the rest of the code does not have to pull the USB
 boolean LogFileSyncADK = false;
 File LogFile;

ChApTer 8 ■ AnDroID SenSor neTworKS

154

 AndroidAccessory ADK("Manufacturer2",
 "Model2",
 "Description",
 "2.0",
 "http://yoursite.com",
 "0000000012345678");

Part 2 of the Arduino program contains the setup function. Two serial connections are needed: one for the XBee
module and one for debugging. Arduino pin 2 is used for card detection and pin 10 is used for SD card slave select.
Pins 10 and 13 are set as output, along with pin 53, to make sure the SPI remains in master mode. After the pins and
serial are set up, the code remains in a loop, waiting for the SD card to become available, during which the LED
produces a slow blink. Once the card is detected, the LED will blink rapidly before making sure that the log file is
available. Finally, the setup function initializes the Android connection.

Listing 8-3. Data Logger and ADK Handler, Part 2 of 8

void setup(){
 Serial.begin(115200); // serial to monitor
 Serial3.begin(115200); // serial to XBee
 pinMode(2, INPUT); // pin for SD card detection; can attach interrupt if needed
 digitalWrite (2, HIGH);// pull up for chip detect
 pinMode(13, OUTPUT); // use onboard LED for diagnostics
 pinMode(53, OUTPUT); // make sure the SPI won't enter slave
 pinMode(10, OUTPUT); // CS pin for SD
 while (!SD.begin(10)) { // wait for SD to be available
 digitalWrite (13, (Blink = !Blink)); // constant blink waiting for card
 }
 delay (100);
 for (int i = 0 ; i <= 10 ; i++) {
 digitalWrite (13, (Blink = !Blink));
 delay (100);
 } // fast blink to show SD card is initialized
 if (SD.exists("sensor.log")) {
 for (int i = 0; i <= 4 ; i++) {
 digitalWrite (13, (Blink = !Blink));
 delay (300);
 }// slow short blink to show file is found
 }
 else{
 LogFile = SD.open("sensor.log", FILE_WRITE);
 LogFile.close();
 } // create log file if none is found
 ADK.begin(); // initialize the Android connection
} // end setup");

In part 3, the loop function controls the major flow of the Arduino program. The loop function starts with a
confirmation of the presence of the SD card. If there is no SD card inserted, the program blinks the LED and sets flags
for use when the SD card is available. When the SD card is available, the program will count the times the loop is run,
and if a packet is not received within the set amount of counts, the function will resend the last reply packet type as
either “OK” or “BAD.” The loop function also checks the availability of the ADK connection, along with checking for
new data from Serial3.

http://yoursite.com

ChApTer 8 ■ AnDroID SenSor neTworKS

155

Listing 8-3. Data Logger and ADK Handler, Part 3 of 8

void loop(){
 if (digitalRead(2) == HIGH){
 digitalWrite (13, HIGH);
 if (IcomingTime >= 25){
 if (lastReply){
 SendOK();
 }
 else{
 Serial3.write (badPacket,21);
 }
 IcomingTime = 0;
 }
 HandleADK();
 CheckForIncoming();
 delay (50);
 IcomingTime++;
 } // end if (digitalRead(2) == HIGH)
 else{
 IcomingTime = 1000;
 bool lastReply = false; // will request a new packet to be set
 // if node is waiting for reply
 digitalWrite (13, (Blink = !Blink)); // blink when SD card is not available
 delay (100);
 } // end else for if (digitalRead(2) == HIGH)
} // end loop

Part 4 is the function to capture incoming packets from the Arduino. It performs the checksum verification. This
function is closely related to the receive function created in the openFrameworks portion and described in Chapter 5.
The CheckForIncoming function has a bit more control than previous examples to ensure that the packets are properly
received. It does this by flushing all of the input and serial connection buffers connected to the XBee module when
too many errors have been encountered. This function also initiates the proper reply packet based on the checksum
being correct, along with the reading of the packet when a proper packet is received.

Listing 8-3. Data Logger and ADK Handler, Part 4 of 8

void CheckForIncoming(){
 incomingBuffer[0] = 0; // clear the first byte of the incoming buffer
 if (Serial3.available() && 0x7E == (incomingBuffer[0] = Serial3.read())){
 incomingBuffer[1] = Serial3.read(); // pull packet length
 incomingBuffer[2] = Serial3.read();
 incomingByteLen = incomingBuffer[1] + incomingBuffer[2]; // calculate packet length
 incomingPacketChecksum = 0; // clear checksum
 for (int i = 3; i <= incomingByteLen + 3; i++){
 incomingBuffer[i] = Serial3.read(); // capture packet
 incomingPacketChecksum += incomingBuffer[i]; // calculate checksum
 }
 incomingPacketChecksum = (0xFF - incomingPacketChecksum); // finish checksum
 incomingByteLen += 3;

ChApTer 8 ■ AnDroID SenSor neTworKS

156

 if (incomingByteLen > 0 && incomingPacketChecksum ==
 incomingBuffer[incomingByteLen+1]){
 Serial3.flush(); // done with serial buffer for now
 ReadPacket(); // read and handled the data
 SendOK(); // reply to original sender
 }
 else { // if checksum is bad, perform clean and bad packet send
 ERRcount++; // increment error count
 for (int i = 0; i <= 80; i++){ // clear packet from incoming buffer
 incomingBuffer[i] = 0;
 }
 Serial3.flush(); // clear serial connection
 delay (100);
 // if too many errors encountered, reset serial connection
 if (ERRcount == 10) {
 Serial3.end(); // stop serial completely
 for (int i = 0; i <= 10; i++) { // blink for verification
 digitalWrite (13, (Blink = !Blink));
 delay (50);
 ERRcount = 0; // reset error count
 }
 Serial3.begin(115200); // restart serial connection
 delay (30);
 }
 Serial3.write (badPacket,21); // send BAD reply
 lastReply = false; // set last reply ad bad flag
 } // end else checksum bad
 } // end if (Serial3.available() && 0x7E
} // end void CheckIncoming()

Part 5 reads a proper incoming packet using a switch statement and recognizes three packet types. The three
packet are a data packet, an AT command response, and a transmit response. The transmit and AT command response
both print to the serial monitor when they are detected and perform no other work on those types. When a data
packet is received, the address of the sending node is placed in an array for use in the SendOK function, which will be
called after this function returns to CheckForIncoming. Data is also phrased from the data packet and placed in an
array to be used for prepping the format and containment in the log file on the SD card.

Listing 8-3. Data Logger and ADK Handler, Part 5 of 8

void ReadPacket(){
 IcomingTime = 0; // received a good packet-reset time
 switch (incomingBuffer[3]){ // check packet type and perform any responses
 case 0x90: // data packet
 dataLength = 0;
 for (int i = 4; i <= 13; i++){ // get both addresses of the source device
 sourceADR[i-4] = incomingBuffer[i];
 }
 dataLength = incomingByteLen - 15; // reduce to just the data length to get the data
 for (int i = 0; i <= dataLength; i++){
 incomeData [i] = incomingBuffer[i+15]4data from the packet
 }

ChApTer 8 ■ AnDroID SenSor neTworKS

157

 if (dataLength == 4){ // send data to the preparation function if length is proper
 PrepareDataForSD();
 }
 break;
 case 0x8B: // if packet is a transmit response, perform action
 Serial.println ("Transmit Response");
 break;
 case 0x88: // inform of information from command response
 Serial.print("Command response :");
 Serial.print (incomingBuffer[8], HEX);
 Serial.println (incomingBuffer[9],HEX);
 break;
 default: // announce unknown packet type
 Serial.println ("error: packet type not known");
 } // end Switch Case
} // end void ReadPacket

In part 6, the next function preps the data to be contained in the SD card and that’s ready for passing to the
Android device. When data is received and parsed from the incoming packets, it is sent to this function and placed in
the SD buffer according to the sensor’s number. This function will place all three sensors into the respective locations,
and when the last sensor is received, the SD buffer is written to the SD card for storage. The data is sorted with a
switch that looks at the second position of the incomeData array, which contains the sensor number associated with
the sensor data. Once the third sensor is received, the SD buffer is printed to the serial connection to the computer for
debugging, and the SD buffer will be sent to the Android device if connected and the data in the log has been synced.

The method of logging the data after the third sensor has been received sometimes misses some of the other
sensors. In more professional setups, the program should make a request for the missing sensor data from the
network, but for this demonstration it is not necessary. This function can also be used to pull a local sensor to add
extra sensor data to the log. When the SD buffer is ready, the code opens the file for writing and finds the last position
by seeking to the end based upon the file size, and closes the file when finished. The positions that are associated with
the sensor data are reset to the initialization values returning back to the calling function.

Listing 8-3. Data Logger and ADK Handler, Part 6 of 8

void PrepareDataForSD(){
 switch (incomeData[1]){
 case '1':
 SDoutBuffer[3] = incomeData[2];
 SDoutBuffer[5] = incomeData[3];
 break;
 case '2':
 SDoutBuffer[11] = incomeData[2];
 SDoutBuffer[13] = incomeData[3];
 break;
 case '3':
 SDoutBuffer[19] = incomeData[2];
 SDoutBuffer[21] = incomeData[3];
 // a local sensor can be pulled and added to the SD buffer at the L1 location
 LogFile = SD.open("sensor.log", FILE_WRITE); // open file for writing
 LogFile.seek(LogFile.size()); // find end of file to append

ChApTer 8 ■ AnDroID SenSor neTworKS

158

 if (LogFile) {
 LogFile.write (SDoutBuffer,34);
 Serial.write (SDoutBuffer,34);
 if (ADKisConnected && LogFileSyncADK){
 ADK.write (SDoutBuffer,34);
 }
 } // end if (LogFile)
 LogFile.close();
 SDoutBuffer[3] = 0xFF; // reset SD buffer
 SDoutBuffer[5] = 0xFF;
 SDoutBuffer[11] = 0xFF;
 SDoutBuffer[13] = 0xFF;
 SDoutBuffer[19] = 0xFF;
 SDoutBuffer[21] = 0xFF;
 break;
 } // end switch
}// end void PrepareDataForSD()

Part 7 is the function that creates and sends an OK reply and is called when a good packet is received from the
XBee network. The packet is created dynamically to be able to send the reply packet to the originating sensor node.
The packet is formed in the same fashion as every XBee API transmit request that has been generated thus far.
The packet is formed in a buffer with the proper formatting before being sent. The packet’s data is constant; the
only change is that of the address.

Listing 8-3. Data Logger and ADK Handler, Part 7 of 8

void SendOK(){
 delay (50);
 byte length = 2;
 byte Outdata[2] = {'O', 'K'};
 OutPacketBuffer[17 + length] = 0; // clear checksum byte
 OutPacketBuffer[0] = 0x7E; // start byte
 OutPacketBuffer[1] = 0; // 1st length byte will be zero with current limitations
 OutPacketBuffer[3] = 0x10; // transmit request frame type
 OutPacketBuffer[4] = 0; // frame ID
 for (int i = 5; i <= 14; i++){ // add addresses
 OutPacketBuffer[i] = sourceADR[i-5];
 }
 OutPacketBuffer[15] = 0 ; // set both options
 OutPacketBuffer[16] = 0 ;
 for (int i = 0; i < length; i++){
 OutPacketBuffer[i + 17] = Outdata [i]; // add data to packet
 }
 OutPacketBuffer[2] = 14 + length; // set the lower length byte
 for (int i = 0; i < OutPacketBuffer[2]; i++){ // start calculating errorsum
 OutPacketBuffer[17+ length] = OutPacketBuffer[17+ length] + OutPacketBuffer[i+3];
 }
 // finish packet by adding checksum
 OutPacketBuffer[17+ length]= 0xFF - OutPacketBuffer[17+ length];
 Serial3.write(OutPacketBuffer, (18 + length));
 lastReply = true;
}// end void SendOK()

ChApTer 8 ■ AnDroID SenSor neTworKS

159

In Part 8, the last function included in the Arduino sketch handles the Open Accessory connection. This function
is pulled at a regular interval to check for incoming data from the Android device. When the Android device is
connected, a Boolean flag is set to true to avoid running the isConnected function too often by other functions that
need to know when the Android device is connected. A predetermined set of bytes are used as commands from the
Android device to allow for syncing of the log information, deleting the log, or disconnecting the Android device
from the Arduino. The command for syncing the data is an ASCII a; when this command is issued from the Android
device, the Arduino will read the log file 34 bytes at a time and send the information to the Android device for further
processing. When a command of a b is received, the Arduino will stop sending updated information to the Android.
The log file will be deleted when a command of c is received. If the Android device is not connected, the two flags that
control the sending of updated data to the Android device are set to false.

Listing 8-3. Data Logger and ADK Handler, Part 8 of 8

void HandleADK(){
 if (ADK.isConnected()) {
 delay (100);
 ADKisConnected = true;
 if (ADK.available() > 0){ // check for incoming data
 switch (ADK.read()){
 case 'a': {
 Serial.println('a');
 File LogFile = SD.open("sensor.log");
 If (LogFile) {
 while (LogFile.available()) { // read bytes into buffer
 for (int i = 0; i < 34; i ++){
 SDinBuffer[i] = LogFile.read();
 }
 ADK.write (SDinBuffer, 34);
 } // end while (LogFile.available())
 LogFileSyncADK = true;
 LogFile.close();
 } // end if (LogFile)
 break;
 } // end case 'a':
 case 'b':
 LogFileSyncADK = false;
 break;
 case 'c':
 SD.remove("sensor.log");
 break;
 }// end switch (ADK.read())
 } // end if (ADK.available() > 0)
 } // end if (acc.isConnected())
 else{
 ADKisConnected = false;
 LogFileSyncADK = false;
 }
}// end HandleADK()

ChApTer 8 ■ AnDroID SenSor neTworKS

160

When all the code is complete for the Arduino sketch, compile and upload it to the Arduino Mega ADK with the
SD adapter and the XBee module connected. The openFrameworks program needs to be started to ensure that the
WaitForReply function calls are uncommented and the program is recompiled. Insert an SD card into the Arduino
and power on the setup. When the Arduino is powered on, the openFrameworks program should start to send data
and move through the data arrays. The serial monitor can be used to see the data being written to the SD card after
three sensors have be sent and received.

Now that the data is being logged to the SD card, the ADK monitor program that was created in Chapter 4 can be
used to verify that the data is getting sent to the Android device. While the Arduino and openFrameworks are running,
plug the Android device into the host side of the Mega ADK and wait till the Android program detects the event.
A command can be sent to the Mega ADK when an a is sent; in this case the log data should be printed to the Android
screen. The data should match the printed data on the Arduino serial monitor and should update at about the same
time while connected.

Note ■ Before the Android program is complete, you can verify the data on the SD card by using a hex editor to read
the sensor.log file when the SD card is read by a computer.

The Android Application
In this section, we’ll make the Android program display the data in a more human-readable format. The example
adds a chart that graphs the data in a fashion similar to the openFrameworks code. The layout of the program is
shown in Figure 8-3. The graph is drawn at the top of the screen above the monitor box. Making the graph is a bit
difficult to do from scratch, so a library is used to add the functionality. The library that is going to be used is called
AChartEngine. The chart library adds the ability to make scatter plots, pie charts, and line or bar graphs that can be
created dynamically and can be pinched, zoomed, and scrolled. The binary distribution of the library needs to be
downloaded from www.achartengine.org.

http://www.achartengine.org

ChApTer 8 ■ AnDroID SenSor neTworKS

161

The program that this example creates uses the same framework that was created in Chapter 4. A new project can
be created in the Eclipse IDE and the framework section copied over using the same method as the original setup.
To use the library, create a folder named libraries in the RES folder in the project’s workspace, and drag and drop the
achartengine-1.0.0.jar file into the newly created folder. Right-click the added JAR file in the workspace and select
Build Path ➤ Add to Build Path from the pop-up menu to make the library fully ready for use. The JAR file will move
from the location copied to the Referenced Libraries workspace folder when it is properly added to the build path.

The Javadocs of the AChartEngine library can be a great help on how to use it (see www.achartengine.org). Note
that this example only focuses on one possible implementation of the chart engine and only uses the line graph setup.

Figure 8-3. The running Android application

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.achartengine.org

ChApTer 8 ■ AnDroID SenSor neTworKS

162

The Android application needs a different main.xml file and a strings.xml file. Listing 8-4 is the main.xml file
that needs to be created. The graph is created in a nested layout inside of the main relative layout within the main.xml
file. The LinearLayout tag defines the space that will be used to place the graph created at run time. An Edit text box
is used to display the incoming data from the Arduino and has the same functionality as the data-display box for the
ADK monitor program. Two buttons are also created in the main.xml file for the layout: one to sync the data stored
on the SD card and receive current updates while plugged in, and the other to clear the data from the screen. Both
buttons are set up to call a respective function in the activity class.

Listing 8-4. main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/relativeLayout1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="0.72" >
 <LinearLayout
 android:id="@+id/chart"
 android:layout_width="fill_parent"
 android:layout_height="500dp"
 android:layout_alignParentTop="true"
 />
 <EditText
 android:id="@+id/incomingData"
 android:layout_width="wrap_content"
 android:layout_height="250dp"
 android:layout_above="@+id/syncbutton"
 android:layout_alignParentLeft="true"
 android:layout_alignParentRight="true"
 android:scrollbars="vertical"
 android:clickable="false"
 android:cursorVisible="false"
 android:focusable="false"
 android:focusableInTouchMode="false"
 android:gravity="top"
 android:inputType="textMultiLine|textNoSuggestions"
 android:hint="@string/hint" />
 <Button
 android:id="@+id/clear"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"
 android:onClick="clearScreen"
 android:text="@string/clear" />
 <Button
 android:id="@+id/syncbutton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"

http://schemas.android.com/apk/res/android

ChApTer 8 ■ AnDroID SenSor neTworKS

163

 android:layout_toLeftOf="@+id/clear"
 android:onClick="SyncData"
 android:text="@string/sync" />
</RelativeLayout>

Listing 8-5 is the strings.xml file and defines the new application name, a hint for the Edit text box, and the
name of the two buttons. As stated in Chapter 4, putting the information in the strings.xml file saves you from having
to go to every instance that will be used to change a name. When this application is loaded on the Android device,
it will have a different name than that of the ADK monitor, but will still respond to the same accessory name declared
in the Arduino sketch. Sharing the same information is not a problem if the default program option on the autorun
pop-up menu is not selected. The Android device will give a series of options if there are multiple programs that use
the same accessory. If the multiple options are undesirable, change the declaration to a new accessory name in the
Arduino sketch, and change the accessory_filter.xml file in the Android project to reflect the changes.

Listing 8-5. strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">ADK Sensor Network</string>
 <string name="hint">Data from Arduino board will be displayed here</string>
 <string name="sync">Sync</string>
 <string name="clear">Clear</string>
</resources>

New objects for the chart engine need to be imported for you to use the graphing capabilities in the application.
Listing 8-6 shows the new imports needed for the chart that will be used. ChartFactory and GraphicalView make up
the main core of the chart engine. There is a data class that contains the data in a series for the graph using Cartesian
x- and y- coordinates for the point’s position. XYMultipleSeriesDataset is used for a class that will contain all the
series data that will need to be displayed on the screen. XYSeriesRenderer and XYMultipleSeriesRenderer are
needed to get the data rendered properly. The import android.graphics.Color is used to get classes that predefine
colors such as red, green, and blue to make color use a bit easier. The import android.widget.LinearLayout will
allow the blank layout to be accessible for adding the graph to the layout space defined in main.xml. Add the import in
Listing 8-6 to the beginning of the ADK framework from Chapter 4.

Listing 8-6. New Imports for Using the AChartEngine Library

import org.achartengine.ChartFactory;
import org.achartengine.GraphicalView;
import org.achartengine.model.XYMultipleSeriesDataset;
import org.achartengine.model.XYSeries;
import org.achartengine.renderer.XYMultipleSeriesRenderer;
import org.achartengine.renderer.XYSeriesRenderer;
import android.graphics.Color;
import android.widget.LinearLayout;
import android.widget.View;
import android.widget.Button;
import android.widget.EditText;

ChApTer 8 ■ AnDroID SenSor neTworKS

164

Listing 8-7 defines the new variables that need to be added to the framework to define the chart and the data
that will be drawn to the screen. The first two new variables declare the multiple-series data set and the renderer. The
data-set variable contains the three series that will make up the data from the sensors. The renderer uses the data set
to display the data and is used by the SensorChartView class’s repaint function. Options for the renderer are set in
the SetupGraph function, described later. Each piece of the sensor’s data is contained in a simple XYSeries variable
declared with the name on creation and will have data added to it as it is received from the Arduino board. The linear
layout has to be declared so that the registerUIobjects function can add the graph to the view for the user. The
buttons and the Edit text box are added in the same way as the ADK monitor. The last six variables are used to store
information for the placement within the graph and the beginning limits to display, along with a Boolean to inform
functions of the status of the synchronization with the Arduino board. Add the variables in Listing 8-7 to the program
after the beginning of the activity class and before the first function.

Listing 8-7. New Variables for the Android Sensor Network Application

// chart variables
private XYMultipleSeriesDataset SensorData = new XYMultipleSeriesDataset();
// the XYMultipleSeriesRenderer spans two lines in the book
private XYMultipleSeriesRenderer SensorRenderer = new XYMultipleSeriesRenderer();
private XYSeries Sensor1CurrentSeries = new XYSeries("Sensor 1");
private XYSeries Sensor2CurrentSeries = new XYSeries("Sensor 2");
private XYSeries Sensor3CurrentSeries = new XYSeries("Sensor 3");
private GraphicalView SensorChartView;
// chart container and other UI objects
private LinearLayout layout;
private Button buttonSync;
private Button ScreenClear;
private EditText DataFromArduino;
// chart control variables
double[] limits = new double[] {0, 500000,-127,127}; // for chart limits
double x = 0;
double y = 0;
double xCount = 0;
double lastMinX = 0;
boolean Sync = false;

Listing 8-8 is the function that registers the user interface objects to the code. Both of the buttons and the text
box are set to the defined objects in main.xml, as was done in prior Android applications. The chart is a bit unusual
because the chart view must be added to the linear layout; this is done by adding the output of ChartFactory’s
getLineChartView function to the SensorChartView variable. Some information has to be included with the
getLineChartView function call—the instance of the program along with the data set and renderer that will be used
with the chart need to be passed to the function. Then the SensorChartView variable id added to the linear view
before this function is finished.

Listing 8-8. New registerUIobjects Function

private void registerUIobjects(){
 buttonSync = (Button) findViewById(R.id.syncbutton);
 ScreenClear = (Button) findViewById(R.id.clear);
 DataFromArduino = (EditText)findViewById(R.id.incomingData);
 layout = (LinearLayout) findViewById(R.id.chart);
 // the next line spans two in the book

ChApTer 8 ■ AnDroID SenSor neTworKS

165

 SensorChartView = ChartFactory.getLineChartView(this, SensorData,
 SensorRenderer);
 layout.addView(SensorChartView);
}// end registerUIobjects

The SetupGraph function defined in Listing 8-9 sets the options for how the graph will be rendered to the screen,
and also links the individual data series to the graph. The overall options that are set include the color of the axes,
the text size, the axes’ minimums and maximums, and the pan limitations. The color of the data series is controlled
by individual renderers that are added to the multi-series renderer variable. There are a lot of options that can be set
for the graph; be sure to check out the Java reference documentation at www.achartengine.org/content/javadoc/
index.html for more in-depth information. The SetupGraph function needs to be called from the onResume function
of the framework. Add the code line SetupGraph(); after the super.onResume(); line in the function. The SetupGraph
function is called from this function to ensure that the graph will be set up correctly every time the program resumes.

Listing 8-9. Function That Defines How the Graph Is Drawn

public void SetupGraph(){
 // set chart-drawing options
 SensorRenderer.setAxisTitleTextSize(10);
 SensorRenderer.setChartTitleTextSize(10);
 SensorRenderer.setLabelsTextSize(10);
 SensorRenderer.setLegendTextSize(10);
 SensorRenderer.setMargins(new int[] {10, 10, 10, 0});
 SensorRenderer.setAxesColor(Color.WHITE);
 SensorRenderer.setShowGrid(true);
 SensorRenderer.setYAxisMin(−127);
 SensorRenderer.setYAxisMax(127);
 SensorRenderer.setXAxisMin(0);
 SensorRenderer.setXAxisMax(100);
 SensorRenderer.setPanLimits(limits);
 // add the three series to the multi-series data set
 SensorData.addSeries(Sensor1CurrentSeries);
 SensorData.addSeries(Sensor2CurrentSeries);
 SensorData.addSeries(Sensor3CurrentSeries);
 // set color options for the data lines to match graph openFrameworks
 XYSeriesRenderer Sensor1renderer = new XYSeriesRenderer();
 Sensor1renderer.setColor(Color.GREEN);
 XYSeriesRenderer Sensor2renderer = new XYSeriesRenderer();
 Sensor2renderer.setColor(Color.YELLOW);
 XYSeriesRenderer Sensor3renderer = new XYSeriesRenderer();
 Sensor3renderer.setColor(Color.BLUE);
 // add the sensor graph with set options to the graph
 SensorRenderer.addSeriesRenderer(Sensor1renderer);
 SensorRenderer.addSeriesRenderer(Sensor2renderer);
 SensorRenderer.addSeriesRenderer(Sensor3renderer);
} // end SetupGraph

The message handler function that is linked to the thread that is created to check for incoming data from the
Arduino is where the program dynamically updates the graph. Because the data is well formatted at the point it is sent
from the Arduino, and the data is consistently sized, the parsing is pretty straightforward—we have only to look at
specific places in the data buffer. This is only possible if the data transition is reliable; in a more refined setup,
a verification step should be used to check that the transition is what is expected. The connection between the Android
device and the Arduino is decently reliable, so this example does not add the verification complexity.

http://www.achartengine.org/content/javadoc/index.html
http://www.achartengine.org/content/javadoc/index.html

ChApTer 8 ■ AnDroID SenSor neTworKS

166

Once the data is received from the Arduino, the three sensors’ data is pulled from the 34-byte array and added
as the y value to the appropriate series of data. Because the data that was sent to the Arduino from openFrameworks
was normalized to a unsigned byte, you have to normalize the data back to a zero value of the sine wave function by
subtracting 127 from the sensor value to make the byte signed. The x value is controlled by a count that is incremented
every time a data transition is received; the same count value is added to all three series. A special function is called
after the data is added to the graph to check if the data is outside of the view; if so, it will scroll to the last position,
keeping the current incoming data always in the view area. The old data is not lost as the graph scrolls, and can be
viewed by scrolling back to the left.

After the graph is printed to the screen, the entire data buffer is appended to the text box to add an extra view for
possible debugging. The information in the text box could be accessed for further processing, such as saving the data
to a file on the Android device. A decent tutorial on reading and writing to the storage of an Android device can be
found at www.java-samples.com/showtutorial.php?tutorialid=1523. This tutorial can be modified to work with
this example because the data is printed to a text box. Listing 8-10 replaces the existing incoming data handler within
the framework.

Note ■ Some online examples for AChartEngine call for a separate thread to be created to be able update the chart
dynamically for new data. This is not necessary for ADK applications, because of the existing thread used to respond to
incoming information from the Mega ADK. This thread provides an event to update the graph when new data is received.

Listing 8-10. Incoming Data Handler Function

Handler IncomingDataHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 BufferData IncomingBuffer = (BufferData) msg.obj;
 byte[] buffer = IncomingBuffer.getBuffer();
 // pull and add sensor data to the graph
 byte sen1 = (byte) (buffer[5] - 127);
 byte sen2 = (byte) (buffer[13] - 127);
 byte sen3 = (byte) (buffer[21] - 127);
 Sensor1CurrentSeries.add(xCount, sen1);
 Sensor2CurrentSeries.add(xCount, sen2);
 Sensor3CurrentSeries.add(xCount, sen3);
 // check if a scroll is needed
 refreshChart();
 xCount++;
 if (SensorChartView != null) {
 SensorChartView.repaint();
 }
 // add data buffer to text box
 String str = new String(buffer);
 DataFromArduino.append(str);
 }// end handleMessage(Message msg)
};// end Handler IncomingDataHandler = new Handler()

The refreshChart function described in Listing 8-11 provides the mechanism to scroll the graph when the
current incoming data exceeds the view area on the screen. The scroll is accomplished by checking if the current
x value count is greater than the highest value of the graph being drawn. When the count is greater, the function
increments the minimum x value and sets the values of the minimum and the new maximum to the graph, creating
the scrolling effect.

http://www.java-samples.com/showtutorial.php?tutorialid=1523

ChApTer 8 ■ AnDroID SenSor neTworKS

167

Listing 8-11. Function to Keep the Graph Focused on the Most Current Data

private void refreshChart() {
 // check if a shift of the graph view is needed
 if (xCount > SensorRenderer.getXAxisMax()) {
 SensorRenderer.setXAxisMax(xCount);
 SensorRenderer.setXAxisMin(++lastMinX);
 }
 SensorChartView.repaint();
}

Caution ■ The graph will fail to redraw when the Android device rotates to a new orientation. This happens because
the application has not been programmed to handle the screen-rotation event.

Listing 8-12 shows the last two functions needed to complete the Android application. The first function is the
clearScreen function, associated with the Clear button. The clearScreen function sends a command of an ASCII b to
the Arduino to inform it that the Android device is no longer synchronized. The clearScreen function then performs
an operation to reset the graph and the text box back to their initial settings.

The SyncData function is associated with the Sync button on the user interface; it first checks whether the
data is currently synchronized to avoid resending the data when the button is clicked multiple times. The SyncData
function send an ASCII command of a to the Arduino, initiating the transfer of the sensor.log file located on the
SD card attached to the Arduino. The transfer is captured by the running thread that is checking for incoming data.
The Arduino transfers 34 bytes at a time to the Android device, and the information of the three sensors is added to
the graph. While the Arduino is connected and the data has been synchronized, new data will be transferred to the
Android device and recorded to the log file on the SD card.

Listing 8-12. Clear-Screen and Sync-Data Button Events

public void clearScreen(View v) {
 byte[] BytestoSend = new byte[1];
 BytestoSend[0] = 'b';
 write(BytestoSend);
 Sensor1CurrentSeries.clear();
 Sensor2CurrentSeries.clear();
 Sensor3CurrentSeries.clear();
 xCount = 0 ;
 lastMinX = 0 ;
 SensorRenderer.setYAxisMin(−127);
 SensorRenderer.setYAxisMax(127);
 SensorRenderer.setXAxisMin(0);
 SensorRenderer.setXAxisMax(100);
 Sync = false ;
 SensorChartView.repaint();
 DataFromArduino.setText(null);
}// end clearScreen

public void SyncData(View v) {
 if (!Sync){
 byte[] BytestoSend = new byte[1];

ChApTer 8 ■ AnDroID SenSor neTworKS

168

 BytestoSend[0] = 'a';
 write(BytestoSend); // sends buffer to the ADK
 Sync = true;
 }
} // end void SyncData(View v)

After the updates described in this example are added to the ADK framework and a final check for errors is
done, the application can be uploaded to a target Android device. Start and run the openFrameworks program and
the Arduino without the Android connected, and let them run for a while to build some data in the log file. When a
sufficient amount of data is sent, connect the Android device without restarting the Arduino. A pop-up menu should
appear, asking for permission to run a program. Select the ADK Sensor Network program. Synchronize the data when
the program is ready, and observe the graph and compare to the one drawn by the openFrameworks program. The
red line in the openFrameworks program should match the last position of the Android graph.

Note ■ The Android application may have to be forcefully stopped each time it is run because the thread sometimes
does not stop properly. More robust thread handling is required for final products.

Summary
The example series in this chapter showed one method of integrating Android into a sensor network and provided
a review of other concepts introduced in other chapters of this book. The possible combinations of what the sensor
network observes and measures and the different technologies that can be used to achieve a final product are
limitless. The example series is not intended to be a final product, but a starting point for further exploration into
sensor networks and integration. An extra challenge that can be tackled with this chapter’s concepts is using a third
XBee module and another USB adapter connected to a different computer to add three more simulated sensors. The
most important thing about sensor networks, Arduino, and Android is that you should explore the technology to get
more familiar with more advanced techniques so you can use them in future projects.

169

Chapter 9

Using Arduino with PIC32 and
ATtiny Atmel Chips

Transitioning from standard to custom Arduino hardware can save space and money. Custom boards can add new
capabilities to projects through increased speed, memory, and pins, as well as new features. This chapter will look
at chips and boards on a spectrum from the power and complexity of the Leonardo to the inexpensive simplicity of
the ATtiny. It will examine the unique capabilities of the chipKIT environment based on the Microchip’s PIC32 series
micro-controller. Then the chapter will demonstrate some unique libraries and features of the chipKIT environment,
including support for scheduling timers, which make object detection with Infra-Red (IR) simple. As an example
using the Atmel ATtiny environment, you will program a secret knock to operate a servo motor, which will open and
close a small wooden box.

Arduino and Nonstandard Environments
Arduino is both a physical specification and a software abstraction layer. Since the Arduino API functions so
effectively, it has been ported to many different platforms and microcontrollers. chipKIT is one of the earliest of these
platforms and the first one that supported compiling code for both itself and Arduino. Multiplatform Arduino means
that that the Arduino environment can compile code for multiple families of different chips. The multiplatform IDE
(MPIDE) can compile Arduino code for Atmel chips and the multiple-platform PIC32.

There is now a broad choice of Arduino-compatible options, including faster and slower chips, with a range
of available numbers of pins, and a variety of other features. This spectrum of complexity results in a spectrum of
price points. For example, the Arduino Due has an ARM Cortex 3 chip that enhances Arduino performance and has
capabilities at similar levels to that of the chipKIT.

These high-performance options work best for some purposes. For example, such an option would be ideal if
you were trying to create a project that causes 26 small boxes to blink Morse code, listen with piezos, or unlock boxes.
You could customize the projects to include a low-cost chip that has a custom circuit board to make the project
affordable. Using these additional environments through the Arduino API allows you to use a high-end prototype.
With the Arduino advantage of quick code prototyping, you can make a smooth transition for porting a project from
a standard Arduino Uno and put the project on a smaller and less expensive ATtiny family of chips.

Lastly, I will be showing how to program smaller chips like the ATtiny85 from a standard Arduino. You will
examine how to make the Arduino a programmer for the ATtiny85 chip—a technique that can be used for the
entire ATtiny family, and for many other chips. You will also use the MPIDE to create a PIC32 Arduino-inspired
project.

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

170

The MPIDE and chipKIT PIC32
chipKIT is an Arduino-derived variation that uses significantly faster hardware and has much more memory. In this
section, you will explore bigger, high-end options. The reference boards for the chipKIT environments are the Digilent
chipKIT Uno32 (shown in Figure 9-1) and the chipKIT Max32. The platform has been around long enough that there
are chipKIT-compatible boards, such as the chipKIT FubarinoSD and chipKIT Fubarino Mini. These boards all fall in
the same price range as the Arduino Uno and the Arduino Mega, but they have significantly improved performance.
The Arduino Due board is comparable in speed.

Figure 9-1. Chipkit Reference Board the Uno32 by Digilent Inc

The chipKIT home page is at http://chipkit.net, and the documentation for the project is located at
http://chipkit.net/category/chipkit-projects. Support and discussion of the project is at the chipKIT
forum, at http://chipkit.org/forum. Lastly, the MPIDE source code and bootloader are located at
https://github.com/chipKIT32/chipKIT32-MAX. Table 9-1 gives a comparison of the two boards.

http://chipkit.net/
http://chipkit.net/category/chipkit-projects
http://chipkit.org/forum
https://github.com/chipKIT32/chipKIT32-MAX

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

171

Digilent has created additional libraries to take advantage of the unique hardware. In addition to the standard
Arduino SPI, there are some improved SPI libraries, including Digilent SPI (DSPI) and Open Source Serial Peripheral
Interface hardware with SPI support. Software SPI (SoftSPI) is a software implementation of SPI that allows any pin to
be used for SPI communication. Software Pulse Width Modulation Servo (SoftPWMServo) ensures that every pin can
be used. It also has improved timer support with the Core Timer Service, and a Task Management service. I will demo
those features later in this section.

Note■ the editor is a derivation of the arduinothis ChipKit max32 board in table 9-1 has many features which put
it on the same playing field as the arduino due. additional features like ethernet, and Car area network(Can) Bus allow
for less expensive shields that bring out these features to pins on ethernet, or Can Bus shield. more chip details can be
found at http://www.chipkit.org/wiki/index.php?title=ChipKIT_Max32.

Table 9-1. Comparison of the Built-In Features of the chipKIT Max32 and the Arduino Mega

Features chipKIT Max32 Arduino Mega

CPU performance 80 MHz 16 MHz

Core 32 bit 8 bit

Flash memory 512 KB 256 KB

SRAM/program memory 128 KB 8 KB

Digital I/O 83/5 PWM 54/14 PWM

Analog I/O 16 16

RTCC Yes No

Ethernet Yes, with add-on shield No

USB USB 2.0 FS, device/host, OTG

CAN controllers 2 0

Timers 16/32 bit 8/16 bit

Comparators 2 1

I2C 5 1

SPI 2 1

UART 6, with IrDA 4

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.chipkit.org/wiki/index.php?title=ChipKIT_Max32

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

172

Another thing in common with the Arduino Due is power issues. There are many pins on the ChipKit Max32 that
are 5v tolerant, but not all are. Here are some caveats when powering pins:

The PIC32 MCUs on these boards have an operational voltage of 3.3V. The ChipKit MAX32, •	
UNO32, and u32 boards are 5V tolerant, meaning you can input 5V to get a digital or analog
reading without burning out the chip. However, these chips only output a maximum of 3.3V.
Some 5V components may not recognize 3.3V.

The readings will be made by default in the range of 0–3.3V instead of 0–5V. So, you will have •	
to change the values in your own code or libraries in order to obtain the correct range. This
may include using a logic level converter for a 5V device. However, many components are
already 3.3V compatible, so, for example, you will not need a logic level converter for chipKIT
or Arduino Due boards. The Arduino revision 3 shield specification includes an IOREF pin. If
your code checks this pin value, you can enable the appropriate level converter for your board.

For I2C, there needs to be external pull-up resistors. The PIC32 does not have internal •	
pull-up resistors for every digital pin, so it is best to not use them. You can also design shields
or breadboard projects by including the needed pull-up resistors, typically 2–2.7kW. This helps
make a shield or project compatible with the Arduino Leonardo, which also does not have
pull-up resistors on the I2C pins.

Note ■ the editor is a derivation of the arduino ide, and it acts and performs the same as the arduino 1.0 editor.
however, at the time of writing, it supports the arduino 0023 core.

Digilent Incorporated has created additional libraries to take advantage of the unique hardware. In addition
to the standard Arduino SPI, there is Digilent Serial Peripheral Interface (DSPI) for hardware based SPI support.
Additionally, there is an official Software SPI (SoftSPI) is a software implementation of SPI that allows any pin to be
used for SPI communication. It is common when using shield to have a conflict with a pin that is already using SPI.
Being able to use software create a new SPI pin gets around that conflict.

Software Pulse Width Modulation Servo (SoftPWMServo) ensures that every pin can be used. The SoftPWMServo
library allows for any pin on a ChipKit board to support servos.

It also has improved timer support with the Core Timer Service, and a Task Management service. The Core Timer
Service will let you work on timing issues with micro second resolution. Whereas the Task Management Service will
let you work at millisecond resolution. We will use the Task Management Service to do object detection with in timed
intervals that will not interfere with your code in the main loop. Also, it will not require polling the sensors in your
loop code.

Example: Object Detection using the Task Manager service
In this example, you will use one chipKIT Uno32, two IR LEDs, and one IR sensor. The example uses the ChipKit
Task Manager to register two tasks that blink the IR LEDs at specified intervals. Figure 9-2 shows the project
breadboard layout. The sensors are connected to pins 5, and 6. The IR sensor is connected to pin 2 which is an
interrupt pin. This will allow the IR sensor to immediately trigger upon the detection of IR.

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

173

The code in Listing 9-1 is loaded using MPIDE. The chipKIT Uno32 is both a listener and broadcaster. It blinks
and receives information about whether or not reflections from the IR LEDs. The code is non-blocking, so you can
simultaneously perform other actions while it is working. It is possible to operate a servo and respond to objects
detected in the front, left, or right of the sensor.

Listing 9-1. IR Object Detection Using the Task Manager Code Example

/*
* Object Detection with the Core Task Manager Service
 * Determine with one sensor which where an object is
 * 2 - 4 IR LEDs
 * 1 IR Sensor
 */

//PIN_INT1 for the ChipKit UNO32 is Pin 2
#define pinInt PIN_INT1

Figure 9-2. Uno32 IR LED sensor and emmiter wiring example

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

174

#define SENSOR1_PIN 2
#define EMITTER1_PIN 5
#define EMITTER2_PIN 6
#define BEATS 6

In listing 9-2 the interrupt pin is defined as PIN_INT1. This is a generic way to refer to interrupt 1. Depending
on what kind of ChipKit you use these can map to different pins on the hardware. For a ChipKit Uno32 these map to
pin 2. If you wanted to use a different interrupt you could use:

Listing 9-2. define hardware values

PIN_INT0 38
PIN_INT1 2
PIN_INT2 7
PIN_INT3 8
PIN_INT4 35

When ever you switch to a different board you will want to double check which pins correspond to the correct
interrupt.

int emmiter1_id;
int emmiter2_id;

unsigned long blink1_var;
unsigned long blink2_var;

In listing 9-3 the the required ChipKit Task Manager variables are defined emmiter1_id, and emmiter2_id are the
task identifier variable that are used to register the task. The blink1_var, and blink2_var are the the data variables that
are passed into the task function and represent the current time information.

Listing 9-3. ChipKit Task Manager Library require variables

volatile boolean emitter1State = LOW;
volatile boolean emitter2State = LOW;
volatile boolean prevEmitter1State = LOW;
volatile boolean prevEmitter2State = LOW;

volatile boolean detected = LOW;
volatile boolean e1detected = LOW;
volatile boolean e2detected = LOW;

volatile unsigned long emit1Count = 0;
volatile unsigned long emit2Count = 0;
volatile unsigned long detectCount = 0;

The meta data about the task are defined. This includes detection count, current emitter status, previous emitter
status, and which emitter was detected. These values will be adjusted in the task manger functions, and the when the
detection interrupt is triggered.

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

175

Listing 9-4. Emmiter data defined and initialized with default values

volatile int phaseA = 0;
volatile int phaseB = 0;
volatile int prevPhaseA = -1;
volatile int prevPhaseB = -1;
volatile int measureA = 0;
volatile int measureB = 0;
volatile int prevMeasureA = -1;
volatile int prevMeasureB = -1;

A measure is defined as the basic container of a set number of intervals that can be thought of as beats per
measure. As each of these beats is stepped through the phase of the measure is updated. The default configuration
is 6 beats per measure. Every time a task is activated it increases the phase until it reaches the end of the measure and
the measure and phases start over again.

Listing 9-5. The measeure and the phase of the measure are defined and initialized

//Prototypes
void blink_emitter1(int id, void * tptr);
void blink_emitter2(int id, void * tptr);
void readIRSensor();
void blink(int);

In Listing 9-6 the prototypes are required because the functions are defined after the loop code. So the prototypes
have to be listed.

Listing 9-6. Prototypes of the functions used by the interrupt system, and the task manger code.

void setup() {
 Serial.begin(115200);
 delay(2000);
 // initialize the digital pin as an output.
 // Pin PIN_LED1 has an LED connected on most Arduino boards:
 pinMode(pinInt, INPUT);
 //debugging LED, shows when pulse found
 pinMode(PIN_LED1, OUTPUT);
 digitalWrite(PIN_LED1, HIGH);
 pinMode(SENSOR1_PIN, INPUT);
 pinMode(EMITTER1_PIN, OUTPUT);
 pinMode(EMITTER2_PIN, OUTPUT);

 digitalWrite(EMITTER1_PIN, LOW);
 digitalWrite(EMITTER2_PIN, LOW);
 //blink before timers and interrups
 blinkAll(6);

In Listing 9-7 the code uses the defined hardware and configure it corectly for the starting state of the project.
This includes a diagnostic called blinkAll. One you see all the LEDs blinking, the hardware is configured correctly and
is ready to detect the IR pulses.

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

176

Listing 9-7. Configuration code the hardware.

 attachInterrupt(SENSOR1_PIN, readIRSensor, RISING);
 emmiter1_id = createTask(blink_emitter1, 13, TASK_ENABLE, &blink1_var);
 emmiter2_id = createTask(blink_emitter2, 13, TASK_ENABLE, &blink2_var);

}

In Listing 9-8 the code attaches the interrupt to the pin it is checking to see if it changes. When the pin is in a
rising state, meaning that it goes from a LOW state to a HIGH state perform a callback to the readIRSensor function.
This guarantees that as soon as the sensor detects an IR pulse it triggers immediately without the need to constantly
check in your loop code a pulse came in.

The next section of code in Listing 9-8 uses the createTask function to set up the task of blinking led emmiter1. The
task id is stored in emmiter1_id. Any time a manipulation of the task is required this id can be used to reference the task.
In the function the first portion is the callback function blink_emmiter1. Blink_emmiter1 is called in a 13 millisecond
interval. TASK_ENABLE forces the task start right away, and the task data is stored in blink1_var. The same logic
applies for the second emitter. At this point the device is sensing and blinking with no code in the main loop used
to control these events. This way your code is always remains specific to your goal, and only needs to respond to a
detection of an IR pulse.

Listing 9-8. Create and activate the interrupt, and the tasks that control the IR leds.

void loop() {
 digitalWrite(PIN_LED1, LOW);

 if (detected) {
 Serial.print("{ \"IRDetect\": ");
 Serial.print(detectCount);
 Serial.print(" ,\"measureA\": ");
 Serial.print(measureA);
 Serial.print(" ,\"measureB\": ");
 Serial.print(measureB);
 Serial.print(" ,\"phaseA\": ");
 Serial.print(phaseA);
 Serial.print(" ,\"phaseB\": ");
 Serial.print(phaseB);
 Serial.print(" ,\"Emmit1\": ");
 Serial.print((int)emitter1State);
 Serial.print(" ,\"prevEmmit1\": ");
 Serial.print((int)prevEmitter1State);
 Serial.print(" ,\"count\": ");
 Serial.print(emit1Count);
 Serial.print(" ,\"Emmit2\": ");
 Serial.print((int)emitter2State);
 Serial.print(" ,\"prevEmmit2\": ");
 Serial.print((int)prevEmitter2State);
 Serial.print(" ,\"count\": ");
 Serial.print(emit2Count);

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

177

The current statue of the system is reported on by using the serial output to show the status of the system in
JSON format.

Listing 9-9. The main loop reports on the status of the system in a JSON format via serial.

 if(emitter1State) {
 prevEmitter1State = emitter1State;
 Serial.print(" ,\"Obj\": \"Right\"");
 }
 if (prevMeasureA == measureA) {
 if (e1detected && e2detected)
 {
 Serial.print(" ,\"Obj\": \"Front\"");
 }
 }
 if(emitter2State) {
 prevEmitter2State = emitter2State;
 Serial.print(" ,\"Obj\": \"Left\"");
 }
 Serial.println("}");
 prevMeasureA = measureA;
 prevMeasureB = measureB;
 prevPhaseA = phaseA;
 detected = false;
 }

}

Listing 9-10 shows the detection logic. If only emitter1 is detected in a measure there is an object on the left.
If only emitter2 is detected in a measure then an object on the right is detected. If in the measure both emitter1, and
emmiter2 are detected there is an object in front of the device.

Listing 9-10. The detection logic is defined by what is detected in a single measure.

void readIRSensor() {
 digitalWrite(PIN_LED1, HIGH);
 if(emitter1State) {
 emit1Count++;
 detectCount++;
 detected = true;
 e1detected = true;
 }
 else if (emitter2State) {
 emit2Count++;++;
 detectCount++;
 detected = true;
 e2detected = true;
 }
}

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

178

Listing 9-11. readIRsensor function is defined.

void blink_emitter1(int id, void * tptr) {
 if(phaseA >= BEATS) {
 phaseA = 0;
 measureA++;
 e1detected = false;
 }

 if (phaseA== 1) {
 emitter1State = true;
 phaseA++;
 digitalWrite(EMITTER1_PIN, emitter1State);
 }
 else {
 emitter1State = false;
 phaseA++;
 digitalWrite(EMITTER1_PIN, emitter1State);

 }
}

void blink_emitter2(int id, void * tptr) {
 if(phaseB >= BEATS) {
 phaseB = 0;
 measureB++;
 e2detected = false;
 }
 if (phaseB == 3) {
 emitter2State = true;
 phaseB++;
 digitalWrite(EMITTER2_PIN, emitter2State);
 }
 else
 {
 emitter2State = false;
 phaseB++;
 digitalWrite(EMITTER2_PIN, emitter2State);
 }
}

Listing 9-12. Blink_emitter1 and blink_emitter2 task are defined.

void blinkAll(int loops)
{
 for (int ii = 0; ii < loops; ii++)
 {
 digitalWrite(PIN_LED1, HIGH);
 digitalWrite(EMITTER1_PIN, HIGH);
 digitalWrite(EMITTER2_PIN, HIGH);
 delay(250);
 digitalWrite(PIN_LED1, LOW);

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

179

 digitalWrite(EMITTER1_PIN, LOW);
 digitalWrite(EMITTER2_PIN, LOW);
 delay(250);
 }
}

Blink all is used as diagnostic function
The code sends timed infrared pulses that are then detected by an IR sensor, so you can debug it and determine

which port is sending data. Connect the chipKIT Uno32 and open the serial monitor in the MPIDE. Then power up or
connect the USB to the FubarinoSD, and it will start transmitting. You should now see frequency counts per second in
your serial MPIDE monitor, and you can perform line-of-sight infrared object detection or detect remote beacon.

In this project the code is depends very little on what occurs in the loop. The only loop code that is used is to
make a decision about where the object is that was detected. Knowing the object position can cause your robot or
device to respond in several different ways including avoidance or point towards it in case you were choosing to move
a camera to look at what was detected. By using these advanced features of interrupts with the Core Task Manager,
service complicated tasks become much easier.

Arduino Support for the ATtiny Family
There are two main ATtiny cores for Arduino. One is maintained by David Mellis at the Hi-Low Tech MIT web site
(http://hlt.media.mit.edu/?p=1695), and the other is a Google Code project called ATtiny core, at
http://code.google.com/p/arduino-tiny/. This chapter will use the ATtiny core project from Google Code,
as it includes support for a wider array of chips, features, and pins.

The ATtiny chips arrive from the factory with fuses set for less than 1 MHz, so you have to decide at what speed
you want your chip to run. The ATtiny85 runs at 1 MHz, but it can be configured to run at 8 MHz, 16 MHz internally,
or 20 MHz with a crystal or oscillator. The first step in programming these chips is to burn the fuse configuration to
support the clock that you will use.

Note ■ if you don’t burn the bootloader, or if you set it to the wrong speed, your chip will not perform at the
expected speed.

You can do this in the Arduino IDE by selecting the chip and the speed from the Tools menu, as shown
in Figure 9-3.

http://hlt.media.mit.edu/?p=1695
http://code.google.com/p/arduino-tiny/

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

180

Next, select the Burn Bootloader option, as shown in Figure 9-4. This will trigger Avrdude to program the correct
options in your chip.

Figure 9-4. The Burn Bootloader option

Figure 9-3. The Board option on the Tools menu

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

181

While the Atmel family of chips is compatible with Arduino, its pin-numbering scheme is different. Let’s look at
the features and specifications of the ATtiny chips in Tables 9-2, 9-3, and 9-4, paying particular attention to the pin
numbering, as diagrammed in Figures 9-5, 9-6, and 9-7.

The Atmel family consists of the following chips:

ATtiny 85, 45, and 25•	

ATtiny 84, 44, and 24•	

ATtiny 4313 and 2313•	

ATtiny 85/45/25
Table 9-2 shows the chip specifications for the ATtiny 85, 45, and 25.

Table 9-2. Chip Specifications for the Arduino ATtiny 85/45/25

Chip Flash EEPROM SRAM PWM ADC Digital I/O

ATtiny85 8KB 128 bytes 128 bytes 2 3 6

ATtiny45 4KB 256 bytes 256 bytes 2 3 6

ATtiny25 2KB 512 bytes 512 bytes 2 3 6

Table 9-3. Chip Specifications for the Arduino ATtiny 84/44/24

Chip Flash EEPROM SRAM PWM ADC Digital I/O

ATtiny84 8KB 128 bytes 128 bytes 4 8 11

ATtiny44 4KB 256 bytes 256 bytes 4 8 11

ATtiny24 2KB 512 bytes 512 bytes 4 8 11

Figure 9-5. Pin layout of the ATtiny 85/45/25

Pin 7 supports I2C, and pin 5 supports SCL and SDA, as shown in Figure 9-3. This support is maintained through
the TinyWire library. The code can be found at http://arduino.cc/playground/Code/USIi2c.

ATtiny 84/44/24
Table 9-3 shows the chip specifications for the ATtiny 84, 44, and 24.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://arduino.cc/playground/Code/USIi2c

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

182

I2C is supported on pin 7, and SDA and SCL are supported on pin 9, as shown in Figure 9-4.

ATtiny 4313 and 2313
Table 9-4 shows the chip specifications for the ATtiny 4313 and 2313.

Figure 9-6. Pin layout of the ATtiny 84/44/24

Figure 9-7. Pin layout of the ATtiny 4313 and 2313

Table 9-4. Chip Specifications for the ATtiny 4313 and 2313

Chip Flash EEPROM SRAM PWM ADC Digital I/O

4314 4KB 256 bytes 256 bytes 4 0 18

2313 2KB 128 bytes 128 bytes 4 0 18

These chips do not have a standard serial interface, so the normal Arduino bootloader does not work with these
chips. You must manually set the chip configuration in one step, and then you can program the chip using an in-system
programmer. The protocol is SPI.

Each of these chips has the following:

MISO•	

MOSI•	

Vcc•	

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

183

GND•	

SCK•	

RESET•	

Using the Arduino as an ISP Programmer
An in-system programmer (ISP) is a device that can program other chips. There are several system programmers
available. I recommend the Adafruit USBTinyISP, which you can download at https://www.adafruit.com/products/46.
In this case, as shown in Figure 9-8, you want to use the Arduino as an ISP programmer, which allows you to wire it
directly, and to create a custom PCB, or to make a shield for quick programming.

Figure 9-8. The Arduino Uno as an ISP programmer

The ATtiny in the example is the ATtiny85. Other ATtiny chips can be programmed the same way as long as the
correct ISP pins are mapped. The example in Figure 9-6 also shows a corresponding circuit board that you can create.

Since an Arduino resets when connected via a serial port, you will need to disable the reset pin in order to avoid a
reset when programming. This can be done in a couple of way—you can either use a 10mF capacitor from the reset pin
to the ground or a 124W resistor to pull reset high to the 5V pin.

Analog pins are numbered from 1,2 and 3. They correspond to the pins 7, 3, and 2 on the chip, but are referenced
in this way: ADC1 is 1, ADC 2 is 2, and ADC 3 is 3. Since they are already properly initialized, do not set the pin mode
for analog pins. All the digital pins can be referenced via their pin number on the data sheet.

Note ■ it is possible to program an attiny that is configured for 1 mhz, as 8 mhz will cause the delay functions to be
extra slow.

It is also important to note that internal analog reference is usually 1.1, but it is possible to set it to other values too;
however, you must not apply an external voltage to the AREF pin, or else you will short out the op amp in the ADC.

https://www.adafruit.com/products/46

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

184

Given these features, it is possible to program the ATtiny using an Arduino by configuring an Arduino Uno or
another board with the Arduino ISP sketch and wiring the boards to each other, which I will demonstrate in the
following example.

Project: Secret Knock Box
In this example, you will use a secret-knock example to open a small box with a servo. The idea is to detect a knock
and then trigger a servo to open the box. Then you can then use a double-knock to close the box. The box remains
closed until the secret knock is identified. This technique has been used to open doors and boxes and to trigger events
based on a knock code. I used them in my Morse’s Secret Box project, where tapping Morse code opened the box. The
laser-cut designs for these boxes can be found online at http://github.com/ricklon/morsessecret. A custom circuit
board for the project, called the ATtiny Servo, is available as well, at https://github.com/ricklon/attinyservo.

This project is typically done with a larger chip or a standard Arduino Uno. However if you were to make 20, 30, or
even a thousand of these boxes the cost and complexity would be very high. This makes it impractical to sell a project
for a profit, or efficiently reduce the complexity of project. It is a good idea to prototype on an Arduino Uno which
on average costs $35.00 per unit. In this case, though, you want to use the ATtiny85, which costs around $1.29, or
approximately $0.75 in quantities of 25.

The options for this chip are somewhat limited, so if Servo.h is unavailable, there are other servo options available.
However, because there is only one timer on the chip, there is a conflict with the Arduino standard Servo Library.
Other servo options are available, but the very basic option is to operate the servo manually by programming the chip
to send the servo pulse commands. This solution works well, and is modeled by this project.

This chapter introduces a project that uses a knock sensor to tap a secret code. LEDs are used to show a knock
occurred, and was detected. When the correct code is sensed a command is sent to move a servo to open a box lid.
An ATtiny85 is used because it has a small form factor, and the additional electronics can fit in extremely small spaces.

What the Device Does
When you program a knock pattern into the device, the system listens for the knock, and the servo is triggered to open
the box. Additionally, there is a programming mode where you can set the knock and use some LEDs for feedback on
the programming process. This project transforms the code from just a stand alone sketch to a library that can be used
in many projects.

Bill of Materials
For this project, you will need the following:

Servo•	

Piezo•	

Two LEDs•	

One button•	

Two resistors (220k•	 W)

One 6M•	 W resistor

The project is small enough to be a simple do-it-yourself PCB or a breadboard, as in Figure 9-9; it can also use
dead bug–style wiring.

http://github.com/ricklon/morsessecret
https://github.com/ricklon/attinyservo

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

185

The Arduino sketch is called KnockUnlock.ino, and includes a servo.h library and a SecretKnock.h library. The
servo.h library simply configures the servo to move at a specific pulse for a specified number of milliseconds.
The SecretKnock.h library defines an object, which allows for the configuration of an initial secret knock and the
appropriate feedback pins to reprogram the knock sequence.

Listing 9-13 is the main sketch.

Listing 9-13. Main Sketch of Secret Knock Box

#include "SecretKnock.h"
#define SERVO_PIN 1

int initKnocks[MAX_KNOCKS]= { 50, 25, 25, 50, 100, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

SecretKnock sKnock;

void setup() {

sKnock.begin(initKnocks);

}

Figure 9-9. Circuit diagram of the knock box

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

186

void loop() {

 sKnock.checkKnock();

}

The current configuration detects a “shave and a haircut, two bits” type of knock. It sounds like “dah, dit, dit, dah,
dit, pause, dit, dit”, and can be visualized like “_.._. ..” You can change this to any knock combination by defining the
pauses in the antiknocks. The pause ratio is used to determine if there are any matching knocks.

Most of the work is completed in the SecretKnock object. First, the pin configurations include the servo—the
green LED is pin 3, the red LED is pin 4, the piezo’s knock sensor is analog pin 1, the program button is pin 0, and the
servo pin is #define SERVO_PIN 1, which is digital pin 1.

Then the secret knock properties are defined, as in Listing 9-14.

Listing 9-14. Definging the Properties of the Secret Knock

threshold = 500; // Minimum signal from the piezo to register as a knock
rejectValue = 25; // If an individual knock is off by this percentage of a knock we

don't unlock.
averageRejectValue = 15; // If the average timing of the knocks is off by this percent we

don't unlock.
knockFadeTime = 200; // milliseconds we allow a knock to fade before we listen for

another one. (Debounce timer.)
lockTurnTime = 650; // milliseconds that we run the motor to get it to go a half turn.
lockMotor = 2;
knockComplete = 1200; // Longest time to wait for a knock before we assume that it's finished.

Once this is complete, the code is ready to perform checkKnock() in the main loop() function. Once the first
knock is detected, it will seek to match a knock pattern.

The enclosure can be any kind of box that you want; you use the servo as a lock that opens when the secret knock
triggers the move-servo code.

You can program the code into the ATtiny85 using the technique demonstrated in Listing 9-13, but be sure to
disconnect the servo.

The servo code, as shown in Listing 9-13, is simplified to manually pulse the servo to make it move. This
technique requires the chip to keep pulsing for the length of time it takes to move the servo. The result is that only one
servo at a time can be active. Even if you were to configure multiple servos, you could only move one at a time.

The key to reading the knock sensor is inside of the checkServo() function. This is analogRead(knockSensor),
which checks if the piezo is greater than the trigger threshold. If so, the code will start listening for a knock pattern.

A knock pattern is recognized by the ratio of pauses within a certain tolerance. The code that makes that
comparison appears in Listing 9-15.

Listing 9-15. The Code That Identifies the Secret Knock

// Sees if our knock matches the secret.
// returns true if it's a good knock, false if it's not.
// to do: break it into smaller functions for readability.
boolean SecretKnock::validateKnock()
{
 int i=0;

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

187

 // simplest check first: Did we get the right number of knocks?
 int currentKnockCount = 0;
 int secretKnockCount = 0;
 int maxKnockInterval = 0; // We use this later to normalize the times.

 for (i=0;i<MAX_KNOCKS;i++){
 if (knockReadings[i] > 0){
 currentKnockCount++;
 }
 if (secretCode[i] > 0){ // todo: precalculate this.
 secretKnockCount++;
 }

 if (knockReadings[i] > maxKnockInterval){ // collect normalization data while we're looping.
 maxKnockInterval = knockReadings[i];
 }
 }

 // If we're recording a new knock, save the info and get out of here.
 if (programButtonPressed==true){
 for (i=0;i<MAX_KNOCKS;i++){ // normalize the times
 secretCode[i]= map(knockReadings[i],0, maxKnockInterval, 0, 100);
 }
 // And flash the lights in the recorded pattern to let us know it's been programmed.
 digitalWrite(greenLED, LOW);
 digitalWrite(redLED, LOW);
 delay(1000);
 digitalWrite(greenLED, HIGH);
 digitalWrite(redLED, HIGH);
 delay(50);
 for (i = 0; i < MAX_KNOCKS ; i++){
 digitalWrite(greenLED, LOW);
 digitalWrite(redLED, LOW);
 // only turn it on if there's a delay
 if (secretCode[i] > 0){
 delay(map(secretCode[i],0, 100, 0, maxKnockInterval));
// Expand the time back out to what it was, roughly.
 digitalWrite(greenLED, HIGH);
 digitalWrite(redLED, HIGH);
 }
 delay(50);
 }
 return false; // We don't unlock the door when we are recording a new knock.
 }

 if (currentKnockCount != secretKnockCount){
 return false;
 }

Chapter 9 ■ Using ardUino with piC32 and attiny atmel Chips

188

Listing 9-16 compares the relative intervals of the knocks, not the absolute time between them. So, for example,
the door should open regardless of whether you carry out the pulsing pattern slowly or quickly, as long as the pattern
is correct. This makes the timing less tricky, which, while making it less secure, can also make the box less picky about
your tempo, which may be slightly off.

Listing 9-16. Code Comparing the Intervals of Knocks

 int totaltimeDifferences=0;
 int timeDiff=0;
 for (i=0;i<MAX_KNOCKS;i++){ // Normalize the times
 knockReadings[i]= map(knockReadings[i],0, maxKnockInterval, 0, 100);
 timeDiff = abs(knockReadings[i]-secretCode[i]);
 if (timeDiff > rejectValue){ // Individual value too far out of whack
 return false;
 }
 totaltimeDifferences += timeDiff;
 }
 // It can also fail if the whole thing is too inaccurate.
 if (totaltimeDifferences/secretKnockCount>averageRejectValue){
 return false;
 }

 return true;

}

The code in Listing 9-16 uses the knock reading array to hold the pattern of knock pauses.

Summary
Transitioning from standard Arduino to a professional approach is a big step. Knowing how to use a high-speed,
32-bit, and feature-rich MCU is critical in moving toward creating high-end projects for video, audio, and peer-to-peer
communication. Additionally, working with the low-end Atmel chips cuts costs and allows you to work on projects with
multiple small parts. For example, you can create a set of Arduinos, using the ATtiny85, that blinks a single code per
block. It is much cheaper to use the ATtiny85, and the form factor is small enough to keep the project relatively small.

189

Chapter 10

Multiprocessing: Linking the
Arduino for More Power

Certain projects may not lend themselves well to an individual Arduino, because of possible limitations with the
hardware, such as a processor’s speed or limited memory. Multiprocessing can add greater functionality to a system;
this is commonly seen with Arduino in the form of coprocessors connected via shields such as the Ethernet shield.
Coprocessor-style shields share their functionality with the Arduino to offload complex processes, but still allow
the Arduino to have the main control. Multiprocessing is normally associated with high-level computing when it
is infeasible to make a single device perform at required speeds. The principles of supercomputing can be applied
to microcontrollers. This chapter explorers the fundamental hurdle of multiprocessing by examining reliable
communication between two or more processors.

Processors can be of same type or unique to best match the type of work being performed. For instance, the
Arduino may not be meant for digital signal processing (DSP) itself, but when combined with a DSP chip, it can
control the DSP and make use of the data coming from the DSP. The development of a sensor package may fit well
within the abilities of one Arduino, and the package could use a basic serial connection. A different communication
method may need to be used if 100 packages have to be working at the same time within the same system. Controlling
a mass LED display built with smaller LED units would employ numerous identical units to make a much larger
display, which would be difficult for a single piece of equipment to achieve.

Multiprocessor systems can be broadly categorized by the coupling between devices. Loosely coupled systems
require a communications package be used between devices, such as the Xbee module to communicate via wireless
or the Ethernet shield. Even if the secondary device is built into the same physical device, the use of a middleman
requires that the processors use extra resources maintaining the additional communication hardware. However, while
loosely coupled processors can lose a great deal of efficiency by adding the extra layer for communication, changing
from one protocol to another, they do have the advantage of being able to traverse great physical distances.

Tightly coupled systems take advantage of methods designed for high bandwidth that are built within the
processor, such as HyperTransport. Some server processors have HyperTransport built directly within the processor
to be able to communicate directly with other processors without having to use other communication hardware.
Tightly coupled multiprocessing setups operate at short distance to maximize the available bandwidth. Usually
distances of a few inches to a few feet separate processors before the increase in transmission line impedance makes
separated hardware-based communication methods more viable. Tightly coupled systems can also share common
resources such as memory with greater ease than can be done with loosely coupled systems. Tightly coupled systems
usually have a protocol for flow control and addressing between processing units. The protocols that are used within
tightly coupled systems are usually simple when compared to loosely coupled systems because data corruption is
limited by careful engineering of the physical connections, lowering the need for complex error correction.

This chapter focuses on chip-to-chip, tightly coupled systems. Several methods exist to connect one chip to
another, and they are categorized as either serial or parallel. In recent times, parallel alone has been decreasing in use
because of the increase in the reliability and speed that serial now provides. A parallel methodology combined with
serial communications has been coming out in the form of technologies such as SATA, PCI express, and USB 3.0.

Chapter 10 ■ MultiproCessing: linking the arduino for More power

190

The lower count of the used pins makes serial methods more viable for microcontroller work. Out of the three common
communication methods that are implemented in the Arduino, only two are viable for use for multiprocessing: I2C
and Serial Peripheral Interface (SPI).

I2C and SPI have the advantage over serial because they offer the ability to connect multiple devices over a data
bus. The I2C and SPI serial communication standards are natively available within the Arduino without any extra
hardware and are excellent choices for chip-to-chip communication. Unlike regular serial, which uses two separate
lines for each connected device, I2C and SPI share the same data transmission lines and are also synchronous
communication methods, both using a shared clock line, which helps with the reliability of transmitted data. SPI is
capable of running faster than I2C, but SPI uses more digital connection when adding more end devices. The added
digital connections are used to address the individual connected devices. Concentrations of the differences between
SPI and I2C need to be taken into account when deciding which method will meet the requirements of a project.

I2C
I2C is a great choice for connecting processors, sensors, and accessories. It has a significant amount of support from
multiple hardware vendors, at least in part because of its low pin count to connect multiple devices. I2C requires
only two lines, a serial clock and a serial data line, shared between multiple end devices. It has advanced features
including flow control, addressing, master/slave both able to control data transmission, and clock stretching to allow
interoperability of slower devices.

I2C has some disadvantages that keep it from being a direct choice for chip-to-chip communications:

I2C is only capable of half-duplex transmission and the bus speed is lower to allow for •	
two-way communications.

I2C has a large address space and allows you to create large networks. An increase in the •	
number of devices can be problematic, however, because as the number of devices go up,
the data line can become saturated with transmissions, choking the serial transmission and
increasing the number of data collisions.

I2C has a deterministic method to deal with collisions between devices, so data should not •	
be lost unless the end device waiting to send fills its entire buffer with data before it can take
control of the data line, which is possible on busy networks.

Other problems can occur with communications between two distant endpoints within a large network.
Capacitance of the data and clock lines can be increased when a line grows in size, due to the data and clock on I2C
connections being pulled high. The change in capacitance directly affects the rise and fall time of the digital signal,
requiring slower bus speeds to accommodate the delay in the state change. The capacitance is negligible with short-
run wire distances, but requires extra consideration on larger systems if a higher data rate is required. There is more
bandwidth loss in I2C inherently because the protocol has built-in handshaking and reply packets.

I2C may be a sufficient solution for chip-to-chip communication if only a few devices neesd to be connected or
the amount of data being transferred is minimal. I2C was earlier described in Chapter 6; refer to the example there for
the basic techniques for implementing I2C communications with Arduino.

Note ■ hardware that is labeled as having a “two-wire interface” is similar to i2C, with some key differences.
diligence should be used when selecting components, especially if the two standards are to be used in conjunction to
ensure compatibility.

Chapter 10 ■ MultiproCessing: linking the arduino for More power

191

Serial Peripheral Interface
SPI is almost the same as serial communication, being capable of full-duplex communication while providing
synchronous connection between devices. SPI offers the following advantages:

It can achieve very high speeds and is normally implemented between one master and one or •	
more slaves.

There is no clock limit set by the SPI standard, and it is limited only by the hardware’s •	
maximum clock speed.

The clock is shared between SPI devices, eliminating the need for the devices to be •	
individually clocked. The master SPI device controls the clock and is similar to the method
used by I2C.

SPI slave devices do not have the ability to temporally hold the clock that is inherent for I2C •	
devices.

SPI has defined a range of connection types: three-wire, which uses a bidirectional data line •	
(a half-duplex method); the more common four-wire; and five-wire, which adds a data-ready
line to provide the ability for a slave device to inform the master that data needs to be transferred.

Note■ the lack of defined protocols can be problematic when integrating multiple devices, as each device can
implement unique protocols, possibly making interconnectivity difficult. a router can be used to bridge dissimilar spi
protocols by translating and passing data from one spi network to another. Manufacturer data sheets should contain all
the information needed to develop such a router. the lack of defined protocols is also an advantage in that it provides
flexibility to tailor protocols to the application.

There are a lot of abbreviations used in this chapter, so Table 10-1 acts as a handy reference guide.

Table 10-1. SPI Abbreviations

Abbreviation Definition

SCK (serial clock) The clock signal generated by the SPI master associated with data
transfer

SS (slave select) A logical high or low signal line used to select one or multiple devices

MOSI (master out slave in) A shared data line on all SPI devices in a network; this is the output of
the master’s shift register and the input of the slave’s

MISO (master in slave out) A shared data line on all SPI devices in a network; this is the input of
the master’s shift register and the output of the slave’s

CLI (clear interrupts) Clears the global interrupt enable flag

SEI (set interrupts) Sets the global interrupt flag

ISR (interrupt service routine) Used to define event handling on the processor

SPCR (SPI control register) An 8-bit register that defines a majority of SPI functionality and
configuration

(continued)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 10 ■ MultiproCessing: linking the arduino for More power

192

Connecting Two Devices
The place to start with SPI is to use the SPI master library. The slave will be demonstrated through direct manipulation
of the registers because the SPI library does not implement a slave mode. It will be easier (and necessary) to work with
SPI using the registers for both master and slave when developing new protocols. The following list describes the class
functions associated with the SPI library:

•	 SPI.begin(): This starts the SPI on the Arduino and sets input/output (I/O) of the SPI default
pins.

•	 SPI.end(): This turns off SPI but does not change the pin modes.

•	 SPI.setBitOrder(): This passes LSBFIRST or MSBFIRST. The master and slaves must be set
the same for proper communication, and in most cases this is arbitrary. Some hardware will
require a specific bit order, so you should reference a data sheet when using the Arduino with
SPI hardware that cannot be configured.

•	 SPI.setClockDivider(): The Arduino is cable of running at several different speeds by setting
a divider of the main clock. This is useful when connecting devices that cannot operate at
the Arduino maximum speed. Increasing the clock divider lowers the clock speed and is also
useful for troubleshooting connections, by preventing noise or crosstalk on the line from being
sampled as a data. The changes in clock speed can correct for lines that have high-capacitance
issues. Table 10-2 lists the available options that can be set.

Note ■ the slave devices must be capable of running at the end clock speed of the master. if the clock is too fast,
the slave devices may attempt to read the clock and data but will fail.

Abbreviation Definition

SPIE (SPI interrupt enable) Turns on interrupt handling for SPI events

SPE (SPI enable) Turns SPI core on or off

DORD (data order) Sets the data order of a transfer to most-significant-bit-first or least-
significant-bit-first

MSTR (master/slave select) Enables the master mode in the SPI core

CPOL (clock polarity) Defines the clock polarity when idle

CPHA (clock phase) Determines when data is set and when it is read in correlation to the
rise and fall of the clock

SPR1, SPR0, SPI2X (SPI clock rate select) Used together to determine the clock divider and speed of the SPI
network

SPSR (SPI status register) Stores flags regarding the SPI transfer; also holds the SPI2X value

SPIF (SPI interrupt flag) Is set when an event triggers the SPI interrupt and is cleared on read

WCOL (write collision) Is written when data is written to the SPDR during a transfer

SPDR (SPI data register) Holds the incoming and outgoing data of an SPI transfer

Table 10-1. (continued)

Chapter 10 ■ MultiproCessing: linking the arduino for More power

193

Caution ■ the atmel data sheet states that a minimum clock divider of 4 should be used. significant transmission
errors occur when attempting to communicate at 8Mhz.

•	 SPI.setDataMode(): This determines how the clock is configured and read. The data lines are
sampled in relation to the clock cycle. This setting is similar to serial baud rate, and all devices
must be set the same for communication to take place. Table 10-3 shows the data modes and
when data is sampled in relation to the clock polarity. When mode0 is used, the clock will idle low,
and data will be sampled when the clock rises. Mode1 shares the same clock polarity as mode0,
with the sample happening when the clock falls to the idle state. Mode2 and mode3 mirror mode0
and mode1, but with the clock set to high when idle. Mode2 samples the data when the clock falls
and mode3 samples when the clock goes high. The default for the Arduino is mode0.

Table 10-2. Clock Divider Settings with Resulting Speed

Command Divide By End Clock Speed

SPI_CLOCK_DIV2 2 8MHz

SPI_CLOCK_DIV4 4 4MHz

SPI_CLOCK_DIV8 8 2MHz

SPI_CLOCK_DIV16 16 1MHz

SPI_CLOCK_DIV32 32 500kHz

SPI_CLOCK_DIV64 64 250kHz

SPI_CLOCK_DIV128 128 125kHz

Table 10-3. SPI Data Transmission Modes

Command Mode Sample on Clock Edge Clock Polarity When Idle

SPI_MODE0 0 Leading Low

SPI_MODE1 1 Trailing Low

SPI_MODE2 2 Leading High

SPI_MODE3 3 Trailing High

Note ■ since the spi clock will remain idle for a majority of the time, even when transmitting, you should use mode0 or
mode1 if possible in power-conscious designs.

•	 SPI.transfer(): Calling this function and passing data will both send and receive 1 byte
over the SPI lines. This function will return the incoming byte from the active slave. This is a
full-duplex transfer; as one bit shifts out of the master, it is received by the slave, and the slave
simultaneously sends a bit to the master.

Chapter 10 ■ MultiproCessing: linking the arduino for More power

194

Setting Up a Master SPI Device
For Listing 10-1, two Arduino-compatible boards are required (Unos were used for the example). For other Arduinos,
refer to the board’s pin map and connect to the appropriate pins. You’ll also need an external LED because the SPI
communication uses pin 13. The SPI master simplifies the pin mapping by setting the pins automatically, regardless
of the board. SPI is electrically a straight-through protocol. The four standard lines of SPI—MISO (master in slave out),
MOSI (master out slave in), SCK (serial clock), and SS (slave select)—should be wired together. You’ll also need to
share a common ground between devices and power, either separately or from one board to another. Table 10-4
describes the standard pin configuration.

The SS line on the master is not tied to any particular pin, and multiple can be used at the same time, one for
each additional device. When using different SS connections, the original SS needs to be declared as an output. If the
SS is an input and drops low, the device will lose its configuration as a master and become a slave.

Listing 10-1 includes code for both an SPI master and slave. The master uses the SPI library, and the slave is
written directly addressing the SPI registers on the Arduino. The code for the slave will be recycled for the second
example, later in the chapter. Before beginning, you should mark the Arduinos as designating master or slave.
A marker with ink that comes off easily with rubbing alcohol can be used on the USB connector.

Listing 10-1. SPI Master Sketch

#include <SPI.h> // Include the SPI library for master
byte dataToSend;
byte dataToReceive;
boolean blink = LOW;

void setup() {
 pinMode(8,OUTPUT); // Blink
 pinMode(10,OUTPUT); // Set the slave select pin to output for the master
 digitalWrite(10, HIGH); // Set the slave select pin high
 SPI.begin(); // Start SPI
 Serial.begin(115200);
 delay(500); // Allow connected devices to initialize
}// End setup

void loop() {
 while (Serial.available() > 0) {
 dataToSend = Serial.read(); // Read a byte in from serial
 transferSPI(dataToSend); // Sent that byte
 }

Table 10-4. SPI Default Pin Configuration

Master Slave

MOSI Output MOSI Input

MISO Input MISO Output

SCK Output SCK Input

SS Output SS Input

Chapter 10 ■ MultiproCessing: linking the arduino for More power

195

 digitalWrite(8, (blink = !blink)); // Blink LED life check
 delay(1000);
}// End loop

byte transferSPI(byte dataToSend) {
 digitalWrite(10, LOW); // Turn the slave select on
 delay(1); // The slave takes a moment to respond to the slave select line falling
 dataToReceive = SPI.transfer(dataToSend); // Begin full-duplex data transfer
 digitalWrite(10, HIGH); // Turn the slave select off
 Serial.write(dataToSend); // Echo sent data
 Serial.println();
 Serial.write(dataToReceive); // Display byte received
 Serial.println();
}// End transferSPI

Verifying the Code
The code in Listing 10-1 needs to be uploaded to a single Arduino that will be designated as master. The SPI functionality
is handled by the library, and with only the SPI.begin() used, the default settings are all used from the Arduino. To verify
that the code is working properly, set up the LED to pin 8 and connect the MOSI pin 11 to the MISO pin 13, creating a
data loopback. The SS and SCK can be left alone for this test. The master connected to itself should echo the characters
sent through the serial connection. As it shifts a byte out normally to a slave, it shifts a byte in. This process is held in
lockstep by the SCK, which normally causes the slave to simultaneously send and receive a bit until the whole byte is
swapped. When plugged into itself, the master will expect a bit from the slave every time it sends one. Once you have
verified that the Arduino can properly send and receive data, it is ready integrate the slave into the SPI setup.

Interrupting Vectors
In order to respond to the incoming data from the master, the slave will need to react very quickly to the SS going
low. The SS pin could be constantly polled in the loop, but this would take a lot of time, and as the code grows in
complexity, it would become altogether impossible for the slave to react quickly enough. To achieve the proper
response time to the master’s control, an internal interrupt needs to be implemented. The Arduino has several
interrupt vectors that each has a specific trigger. Generally, both the SREG and the specific interrupt must be set.
The simplest way to manipulate the SREG is to use the built-in commands cli(); and sei();. cli(); turns global
interrupts off, and sei(); turns them on. When they are on, any enabled interrupts will be followed and make
use of the code within an attached ISR (interrupt service routine) function. When an interrupt occurs, the current
instruction will complete and the code that was running will stop and wait for the interrupt to finish. When working
with new code in an interrupt, it may be helpful to do something observable in the main loop—that is, to have a
simple method to verify that the interrupt is exiting properly and the loop is proceeding.

When designing code that includes interrupts, you need to take special care to determine if other code in the
program will fail while the interrupt is running. This may include code that itself is time sensitive or perhaps shares
a global variable with the interrupt, whereby data loss would occur by following the interrupt. In these cases it is best
to turn interrupts off until the code has executed. This can be accomplished by the command cli();. Remember
the interrupts need to be turned back on after the critical code has executed to be used again later. This, again, is
accomplished by using the sei(); command. When multiprocessing, the behavior of other devices must also be
accounted for. The fact that interrupts are turned off on one device does not prevent the remaining devices from acting
as normal. With SPI, this could be handled through a software layer protocol. Simply have the slave echo the first byte
back to the master before the master continues transmission. This will tell the master that the slave is ready and listening.

The SPI interrupt vector is called when the SREG and SPI interrupt enable are on and the SPI interrupt flag is
set by the SS line going low. These registers are explained in the next section in detail. When these three conditions

Chapter 10 ■ MultiproCessing: linking the arduino for More power

196

are met, the device will jump to ISR(SPI_STC_vect). ISR(SPI_STC_vect) is similar to a function, but has some key
differences. The compiler does not see this as a normal function, so code may be optimized on compile. To protect
against this, data types may have the property _volatile added when in doubt. The biggest difference is that nothing
may be passed to an ISR upon calling it and no data will be returned. ISR cannot call as a normal function; only the
internal interrupt handler may call it when conditions are met. Global variables can be used within the ISR and will be
usable upon exit. Otherwise, using memory space and pointers is also an option, though greater in complexity.

SPI by the Registers
There is no library functionality for an Arduino to run as a slave device at the time of writing. You can create a slave
by directly addressing the registers that control SPI. This method will be used in Listing 10-2 to create a slave device
and will be used in subsequent examples. The functionality of SPI is controlled within three 8-bit registers. This does
not include manipulating the data direction registers or the SREG for global interrupts, which will also be required
for a proper SPI device to be written in a register. The three SPI registers are the SPCR (SPI control register), SPSR (SPI
status register), and SPDR (SPI data register). The layouts of these three registers are shown in the Figure 10-1.

Figure 10-1. SPI register structure

The SPIE (SPI interrupt enable) in the SPCR enables the SPI interrupt vector when SREG is also enabled. This
allows the device to respond quickly when data is ready to transmit and is an absolute must for a slave device. SPI is a
highly time-sensitive protocol; the master will transmit data when it is ready and assumes that the slave is waiting. The
slave cannot delay the master and will cause problems when not properly synchronized with the master. It is possible
for the slave to begin listening to the transmission partway through, which will result in lost data. In addition to using
interrupts, the master may also include a short delay before the first byte in a string of bytes is transmitted, which
helps ensure that the slave is ready and waiting.

Chapter 10 ■ MultiproCessing: linking the arduino for More power

197

The SPE (SPI enable) is required for any SPI communication to take place, and in conjunction with the MSTR
will automatically configure some pin directions as either input or output. Pins that are still user configured must be
set manually. When the MSTR bit is set, the device is in master mode, only forcing MISO to input, so the MOSI, SCK,
and SS should be manually set. If the MSTR is left off, the device is a slave, and all SPI lines except MISO are set as
input. Depending on the nature of the project’s code, it may not be necessary to set the MISO as output, in which case
the slave is set to a receive-only mode. This may be useful in a situation where you need to push data or a command
to multiple devices at once but do not need anything returned from the slave. In these cases it may even be possible
to use a single SS line that is common to all devices if the data being sent is the same for all end devices. Otherwise,
the MISO must be set to output on the slave to allow for full-duplex communication. SPI pin modes are outlined in
Table 10-5 for master and slave.

Returning to the DORD that was skipped over in the SPCR, this bit controls the order in which the bits of the
SPDR are transmitted. The default setting is 0 and will shift the MSB of the SPDR first and the LSB last. If set to 1, then
the reverse will happen—the LSB will be sent first and the MSB last. It is important that these agree on both the master
and the slave.

CPOL and CPHA on the master device determine how the clock is to be generated, as well as when data is to
be shifted to and from the SPDR. A slave device will use these to control how it responds to the clock signal from
the master. The slave will sample the data line when triggered and set the outgoing bit on clock setup. We saw a full
explanation of the clock modes earlier in the chapter. The CPOL and CPHA settings for each mode are listed Table 10-6.

The last two bits of the SPCR, SPR1 and SPR0, set the clock divider along with the last bit of the SPSR, SPI2X,
which is a clock multiplier. Setting the SPI2X will double the clock rate; this, combined with the available speeds from
SPR1 and SPR0, yields a range of clock dividers from 2 to 128. It is worth noting again that the Atmel data sheet states
that the minimum clock divider that should be used is 4. In practice, attempting to use a clock divider of 2 should
return corrupt data. The speed settings are listed in Table 10-7.

Table 10-5. SPI Master vs. Slave Pin Modes

Master Slave

MOSI User set Force input

MISO Force input User set

SCK User set Force input

SS User set Force input

Table 10-6. SPI Clock-Generation Modes

CPOL CPHA

Mode 0 0 0

Mode 1 0 1

Mode 2 1 0

Mode 3 1 1

Chapter 10 ■ MultiproCessing: linking the arduino for More power

198

The SPSR has two remaining settings left: the SPIF (SPI interrupt flag) and the WCOL (write collision). The SPIF
is set when a serial transmission has completed. It can be cleared in a number of ways, including by reading the SPSR
followed by accessing the SPDR. This feature allows a while loop to execute until the serial transfer is completed. This
prevents you from having to read the SPDR before the byte is actually received, and if you are in a sequence of loops,
it prevents you from writing the SPDR while a transmission is in progress. Should the SPDR be written during a serial
transmission, the WCOL will be set to a logical one. This is not generally preferable, so should be avoided. The WCOL
is cleared in the same fashion as the SPIF.

Let’s now see the slave sketch (Listing 10-2).

Listing 10-2. SPI Slave Sketch

byte dataToEcho; // Declare a global variable to be used in interrupt
boolean blink = LOW;
void setup() {
 Serial.begin(115200);
 DDRB |= 0b00010001; // MISO LED(8) Output
 PORTB |= 0b00000100; // Set slave select HIGH
 SPCR |= 0b11000000; // Turn SPIE and SPE on
 SPSR |= 0b00000000; // Default SPI settings
 sei(); // Enable global interrupts
}// End setup

void loop() {
 digitalWrite(8, (blink = !blink)); // Blink LED life check
 delay(1000);
}// End loop

ISR(SPI_STC_vect) {
 cli(); // Turn interrupts off while running sensitive code
 while (!(PINB & 0b00000100)) { // Enter while loop if slave select is low
 SPDR = dataToEcho; // Load the SPI data register with data to shift out
 while (!(SPSR & (1 << SPIF))); // Wait till data transfer is complete
 dataToEcho = SPDR; // Read the incomming data. This byte will be sent next interrupt.
 }
 sei(); // Turn interrupts back on when done
}// End ISR for spi

Table 10-7. SPI Clock-Generation Multipliers

SPCR SPSR

Divider SPR1 SPR0 SPI2X

2 0 0 1

4 0 0 0

8 0 1 1

16 0 1 0

32 1 0 1

64 1 0 0

128 1 1 0

Chapter 10 ■ MultiproCessing: linking the arduino for More power

199

Verifying the Code
Connect the slave to the master as per Figure 10-2, with pins 13 through 10 connected together between the two
Arduinos for SPI, and connect a separate LED to pin 8.

Once you’ve made the physical connections and powered the boards, open a serial connection via USB to the
master. When you enter a single character through serial, that character will be sent to the slave device, and at the
same time receive a byte from the slave. Note that when echoing data, the slave will always be one byte behind; a null
byte will be received back from the first SPI transfer. When the second byte is sent, the first byte will then be echoed.
Should more data from a slave be expected, the master can transmit null bytes until the expected data is all received.
In the case of a slave that echoes, the master will need to send one additional trailing null byte to get back the full
string that it sent. The data sent and received should look like Tables 10-8 and 10-9. Table 10-9 shows a null byte being
sent at the end of a transmission string.

Figure 10-2. Arduino-to-Arduino SPI connections

Table 10-8. Data Transfer Shifting

Transfer # 1 2 3 4 5 6

Sent S A M P L E

Received - S A M P L

Chapter 10 ■ MultiproCessing: linking the arduino for More power

200

The transfer between master and slave is procedural and requires the connection to be maintained consistently
between the devices. The communication in the sample code follows the steps in Table 10-10. The example sends one
byte at a time as Table 10-10 shows; however, large strings can be sent within a loop. The use of loops for sending data
is demonstrated in Listing 10-3, along with an alternative method to create master device by using registers.

Table 10-10. Master and Slave Communication Steps

Master Slave

1. Drop slave select low 1. Begin listening to master

2. Write data to be sent 2. Write data to be sent

3. Full-duplex transfer 3. Full-duplex transfer

4. Read received data 4. Read received data

5. Slave select high 5. Return to idle

Table 10-9. Null Byte at the End of the String

Transfer # 1 2 3 4 5 6 7

Sent S A M P L E -

Received - S A M P L E

Multiple Slaves
Developing a master through register manipulation is a logical next step to developing tightly controlled protocols.
The next feature I’ll address, though, is connecting to multiple slaves. Under a normal four-wire SPI connection, the
addition of slaves beyond the first requires additional SS lines controlled by the master. The MISO, MOSI, and SCK
are shared lines between all devices on an SPI network; however, the SS line will be separated under all but the most
unusual SPI networks. This allows the master to select one slave at a time, and a slave that is not signaled will ignore
the communication.

Master in Register
While in most cases, the SPI library will suffice in the creation of a master SPI device, it will fall short when creating
more complex protocols. For that reason, and to gain a better understanding of the SPI, writing the master code in
register is the next step and is shown in Listing 10-3.

Listing 10-3. Master Code Register Sketch

const int bufferSize = 64; // Sets the size of the txBuffer and the rxBuffer
byte txBuffer[bufferSize]; // Created to hold data waiting to be sent to the slave
byte rxBuffer[bufferSize]; // Created to hold incoming data received from the slave

void setup() {
 Serial.begin(115200);
 DDRB |= 0b00101101; // LED(8) MOSI SCK SS Output
 PORTB |= 0b00000100; // Set slave select HIGH

Chapter 10 ■ MultiproCessing: linking the arduino for More power

201

 SPCR |= 0b01010000; // This is the SPI control register. SPE (bit 6) enables SPI, and MSTR (bit 4)
sets device as master
 SPSR |= 0b00000000; // Default SPI settings and interrupts
}

void loop() {
 if (Serial.available() > 0) {
 int count = 0;
 delay(50); // Allow serial to complete receiving
 while (Serial.available() > 0) {
 txBuffer[count] = Serial.read(); // Dump serial buffer into the txBuffer
 count++;
 }
 PORTB &= 0b11111011; // Turn the slave select on
 transferSPI(count);
 PORTB |= 0b00000100; // Turn the slave select off
 }
 // Blink code
 PORTB |= 0b00000001;
 delay(1000); // Wait for a second
 PORTB &= 0b11111110;
 delay(1000); // Wait for a second
}

int transferSPI(int txBytes) {
 int count = 0;
 while (count < txBytes) {
 SPDR = txBuffer[count]; // Writing to the register begins SPI transfer
 while (!(SPSR & (1 << SPIF))); // While until transfer complete
 rxBuffer[count] = SPDR; // Read newly received byte
 count++;
 }
 displayBuffer(count);
}

int displayBuffer(int nBytes) { // Write txBuffer and rxBuffer to the screen
 Serial.write (txBuffer, nBytes);
 Serial.println();
 Serial.write (rxBuffer, nBytes);
 Serial.println();
}

Verifying the Code
To use the master code from the second example, connect it to an Arduino running the slave code from the first
example. This will be in the normal fashion, straight through, as per Figure 10-2. Verification of code consists of
running a serial connection and sending data. The data will be echoed in the same fashion as the first example. This
code implements one major difference: it takes all incoming serial data and loads it into an array so that the SPI
transmission can be completed in series with greater efficiency. The SS line goes low and stays low until all data in the
txBuffer has been sent and the rxBuffer is filled.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 10 ■ MultiproCessing: linking the arduino for More power

202

Symmetric Architecture Bipolar Bus
SPI is in many ways an elegant solution for chip-to-chip communication; however, it has significant drawbacks that
limit its use:

The first problem is that as the number of slave devices increases, so does the number of SS •	
lines. This can certainly be a problem for pin-intensive projects. Without extra logic such as a
MUX, even the Mega can run out of pins.

The second problem is that the SPI architecture is not resilient to changes. It will work as •	
configured, but you must take great care of design when adding or removing nodes. There is
no real hot-swap ability native to SPI. And, should the master device become compromised,
the whole network will collapse. When a slave device needs to request data transfers, you need
to add a data-ready line. The data-ready signal output from the slave tells the master that data
needs to be transferred. To add a data-ready line we will need additional connections for each
additional slave. All data-flow control is placed on the master, which can limit the functionality
of the master, as it may need to spend a significant amount of processor resources to monitor
and handle communication.

Finally, one slave cannot communicate directly with another. Even if the master were to route •	
the data from one slave to another, there would be a great loss of efficiency, as the data would
have to be transmitted twice. The solution to all these problems is a custom protocol.

Douglas Bebb of MAD Fellows developed a bus architecture as an open standard to better serve in chip-to-
chip communication. This architecture and protocol is called the Symmetric Architecture Bipolar Bus (SABB). It is a
standard in active open development and goes beyond functionality on the Arduino, but can be fully demonstrated
on any Arduino board. On the Arduino, it is built on the SPI block, and so uses registers and methodologies discussed
earlier, but takes best practices and turns them on their head.

Again, for reference, SPI defines a standard that has unique master/slave devices, full-duplex transmission, and
a shared serial clock. Much is left undefined when using SPI, which is both an advantage and drawback. SABB is
designed to be more robust while still allowing flexibility. The highlights of SABB include the following:

Full-duplex communication•	

Synchronous serial•	

Roleless devices•	

Hot-swap capabilities•	

Individual addressing capabilities•	

Address-broadcasting capabilities•	

Backward compatibility to SPI•	

Modular and redundant design•	

Four-wire bus (no extra SS or data-ready lines needed for extra devices)•	

The logical and electrical connections in SABB are similar to SPI, with the exception that the SS line is shared
between all SABB-enabled devices. Figure 10-3 shows a logical block diagram of this feature.

Chapter 10 ■ MultiproCessing: linking the arduino for More power

203

SABB by the Code
Possibly the most significant feature of SABB is the scrapping of master/slave topography. This topography is a huge
limitation on a bus, and so for a number of reasons has been engineered out. All devices connected using SABB
share the same code. While only one device can control the data lines at once, each device has the ability to do so.
Note that while SPI allows communication between a master and a slave, the slaves do not have the ability to directly
communicate. This barrier is removed, as there is no slave/master relationship. Any device may communicate to any
other device on the network. Flow control is first determined on a hardware level, and then once the bus is held by a
device, software flow control takes over. The flow control used in Listing 10-4 is limited to the ability of each device to
be addressed.

Figure 10-3. SABB connection block

Chapter 10 ■ MultiproCessing: linking the arduino for More power

204

Listing 10-4. SABB

const byte myAddress = '2'; // Address range from 0 – 255
const int bufferSize = 64; // 64 matches the size of serial buffer
byte txBuffer[bufferSize]; // Created to hold data waiting to be sent to the slave
byte rxBuffer[bufferSize]; // Created to hold incoming data received from the slave
volatile byte rxBufferSlave[bufferSize]; // Holds data when used as slave
volatile boolean flag = true; // Change LED state flag

void setup() {
 Serial.begin(115200); // Open serial connection
 PORTB |= 0b00000100; // Set SS HIGH
 while (!(PINB & 0b00000100)); // Wait to initialize if SS held LOW externally
 initSPI(); // Prepare to connect to the network
 txBuffer[0] = 0b00000000; // Load tx buffer with a null byte
 transferSPI(1); // Send null byte to release waiting devices
 initSPI(); // Set idle state for board to board communication
 Serial.println("Ready"); // Alert that device is fully initialized
}
void loop() {
 if (Serial.available()) {
 delay(1000); // Wait a sec to receive serial data
 int count = 1; // Store data begining 2nd byte in array
 txBuffer[0] = 0b00000000; // Send null byte first
 while (Serial.available()) {
 txBuffer[count] = Serial.read(); // Dump serial buffer into the txBuffer
 count++;
 }
 Serial.flush(); // Clear serial buffer
 transferSPI(count); // Sends and receives data as master
 printBuffer(count); // Prints data that was sent and received
 initSPI(); // Return to idle state
 }
 if (flag == true){ // Flag sets true when addressed by master
 PORTB = (~(PINB << 7) >> PINB7); // Change the LED state
 flag = false; // Clear the flag
 }
}
void initSPI() { // Sets idle state of connection
 DDRB |= 0b00000001; // LED Output
 DDRB &= 0b11000011; // MOSI MISO SCK SS Input
 PORTB |= 0b00000100; // Set slave select HIGH
 PORTB &= 0b11000111; // MISO MOSI SCK LOW
 SPCR = 0b11000000; // SPIE, SPE, SLAVE, MODE0, CLOCK DIV_4
 sei(); // Global interrupt enabled
}
int printBuffer(int nBytes) { // Display data tx and rx when master
 Serial.println();
 Serial.write (txBuffer, nBytes);
 Serial.println();

Chapter 10 ■ MultiproCessing: linking the arduino for More power

205

 Serial.write (rxBuffer, nBytes);
 Serial.println();
}
int transferSPI(int txBytes) {
 cli(); // Turn global interrupts off
 SPCR |= 0b00010000; // Set SPI master
 DDRB |= 0b00101100; // MOSI SCK SS output
 DDRB &= 0b11101111; // MISO Input
 PORTB &= 0b11111011; // Turn the slave select on
 int count = 0;
 delay(50); // Wait for connected devices to enter interrupt; 50 is a very safe number
 while (count < txBytes) { // Loop until all data has transferred
 SPDR = txBuffer[count]; // Begin byte transfer by writing SPDR
 while (!(SPSR & (1 << SPIF))); // Wait for transfer to complete
 rxBuffer[count] = SPDR; // Read incoming byte
 count++;
 }
 PORTB |= 0b00000100; // Set SS HIGH
}
ISR(SPI_STC_vect) { // SPI interrupt vector
 int count = 0;
 if (!(PINB & 0b00000100)) { // Enter if SS is LOW
 while (!(PINB & 0b00000100)) { // While SS is LOW
 while (!(SPSR & (1 << SPIF))); // Wait till data transfer complete
 rxBufferSlave[count] = SPDR; // Read SPDR
 if (rxBufferSlave[0] == myAddress) {DDRB |= 0b00010000;} // If address matches set MISO to
Output
 SPDR = rxBufferSlave[count]; // Write data to send to SPDR
 count++;
 }
 if (rxBufferSlave[0] == myAddress) {flag = true;} // If address matched set LED change flag
 initSPI(); // Return to idle connection
 }
}

Verifying the Code
For Listing 10-4, you’ll need to connect at least two Arduinos together, as per Figure 10-4. Many more Arduinos
may be used; when more Arduinos are used, the advantage of SABB over SPI becomes apparent. Each connected
device needs a unique address that is set in the code before the sketch is compiled and uploaded. Electrically, the
connections between boards are nearly the same as a standard configuration of SPI. A pull-down resistor is needed
for the data lines to prevent cross talk. An external pull-up resistor may also be added to the chip-select line, though
this is not required. Figure 10-4 shows the specific connections and resistor values.

Chapter 10 ■ MultiproCessing: linking the arduino for More power

206

When loading the code to each board, be sure to assign a unique address to each. No other changes need to be
made to the code. Finally, connect to at least one of the boards through a serial terminal. From this point, you can
send a string to the board. This string will be sent to any devices connected on the bus. The first byte will be examined
for a matching address, and if a match occurs, that device will echo the data it receives. Both the data sent and the
data received will be displayed from the sending device. Also, the code is set to change the state of an LED whenever it
is addressed in a communication sequence. This provides two ways to demonstrate a successful transfer.

After the code is verified, add another Arduino if possible; you can do this on the fly, as functionality for hot-swap
is included in this code example.

Connecting SABB to SPI
While this example does not demonstrate communicating to a conventional SPI device, this is possible, and one can
be added. Since the SPI block will remain idle when not activated by the chip-select line going low, conventional
SPI devices can share the same bus lanes as SABB. You can make a device running SABB a master in an SPI network
by following proper procedure. Figure 10-5 shows a block diagram demonstrating one connection possibility of SPI
sharing a SABB data bus. This relation between SABB and standard SPI allows for every SABB-enabled device to share
standard SPI devices if the SS lines are connected to each SABB device that requires the resource.

Figure 10-4. SABB connection diagram (note the pull-down resistors)

Chapter 10 ■ MultiproCessing: linking the arduino for More power

207

The first step is to drop the chip-select line low between SABB devices. A null byte is sent to all devices on the bus
instead of a matching address or broadcast. Now, as long as this common chip-select line remains low, none of the
devices sharing the SABB device will attempt to hold the data lines. After this step, an SPI device may be used in slave
mode. While SABB does not require additional chip-select lines between devices, SPI does. A chip-select line per slave
to be connected should be used. Connect the SPI device to the MISO, MOSI, and SCK of the SABB device and the
dedicated chip-select line as well. When this unique chip-select line is pulled low, SPI communication can take place.
To release the lines, raise the chip-select lines.

Conversion to Mega
Consistent with other chapters, the code for this chapter was written to support the Arduino Uno. Should the need arise,
you can convert from Uno code to Mega relatively simply. The Mega, having more I/O pins and more program space,
could be replaced by multiprocessing smaller boards. While this is certainly a viable option, the Mega uses a chip set with
more features than the Uno. The Mega may also be an attractive solution because of its density of I/O pins per device.

The first step is to identify the pins and ports that will be used on both devices. When using the SPI core, we
are locked into using specific but unique pins from one board to another. Both devices use PORTB for SPI, but the
bit position in the register is unique, as is the order. This confusion stems from design considerations on the part of
Atmel in assigning PORT definitions. It is then abstracted again by Arduino, in the mapping of the pins on the board
to the chip set. Once the pins and ports are identified, it is a good idea to create a cross-reference chart, as shown in
Tables 10-11 and 10-12.

Figure 10-5. Connection methods; SPI sharing with SABB

Chapter 10 ■ MultiproCessing: linking the arduino for More power

208

The final step is to find all references to the PORT, PIN, and DDR registers in the Arduino code. When addressing
the entire register, be mindful of the pins not used for SPI. These values should be left unchanged and should be masked
accordingly. Commonly used values may be simpler to declare globally as a constant so that only one value needs to be
changed when converting code. It is also a good idea to adopt code conventions that include thorough commenting.
This is especially important when writing registers and using bitwise operations as it can greatly simplify debugging.

Physical Best Practices
These are just a few design considerations when designing the physical layer. When working within an electrically
noisy environment, interference on the transmission lines may cause corrupted data. Wire lengths and PCB
connection tracks should be kept to a minimum; this reduces the “electrical size” of the transmission lines, limiting
the amount of interference induced into the system. This will also prevent high impedance and capacitance on the
lines from causing problems, though on a high-quality line, it is possible to get as much as 6 feet out of a transmission
line. Remember that all SPI lines that are electrically connected should have lengths totaled.

Shielding is the next consideration and especially simple to implement when using external transmission lines.
Since connected SPI devices should use a common ground, adding shielding to a transmission line is as simple as
using a shielded cable and connectors, and then running the ground through the shielding. On a board, a grounded
metal shield or ground plane can be used to keep electromagnetic radiation out. This is likely only a concern when
placing a board near large radiation sources. In less noisy environments, ribbon cable is a great choice. In most
circumstances this will be adequate and has several advantages. Ribbon cable is cheaper than shielded cable. It also
gives you the ability to add crimp connectors anywhere along the cable with no special tools.

Branches of a transmission line may be different lengths; however, the line lengths should be the same or at least
kept close. This means the MISO line should be the same length as the SCK line, which should be the same as the
MOSI line. A difference of a couple inches won’t significantly impact a transmission line, even at the highest speed
available on the Arduino.

Summary
There are many was to connect chips together, and this chapter only focused on a small area of multiprocessing
communication methods. It introduced SPI and SABB, which utilize the fastest communication available on the
Arduino, allowing you to create more complex projects and devices.

Table 10-11. PORTB Register with SPI Pins

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

Uno SCK MISO MOSI SS

Mega MISO MOSI SCK SS

Table 10-12. Arduino SPI Pin Reference

Uno Mega

SS PB2 Pin 10 PB0 Pin 53

MOSI PB3 Pin 11 PB2 Pin 51

MISO PB4 Pin 12 PB3 Pin 50

SCK PB5 Pin 13 PB1 Pin 52

209

Chapter 11

Game Development with Arduino

Game development on the Arduino can push both the hardware resources and the developer’s imagination to their
potential. Games can be simple or extremely complex, challenging skills or even telling a story. This chapter explores
game development as it is related to the Arduino. Games can come in all forms, from a few LEDs testing skill or luck to
a full graphical side-scroller made with the help of the Gameduino.

The Arduino is a great platform to get started with when first getting in to game development, being easy to
program and expand upon. Modern computer games are incredibly complex and are targeted at a large number
of different end devices; they usually involve a lot of development and have game engines that are difficult to
understand. This makes it difficult for individual developers to complete these types of projects on their own. With
Arduino, developers can build great games, and test and distribute their games with greater ease than with modern
computer and console games.

Games Suitable for the Arduino
The average processing power of microcontrollers makes them well suited for the development of coin-operated
(coin-op), medal, redemption, and merchandiser-style arcade games. Here are some examples of these types of games:

Coin-op are games usually table sports played on a table (for example, air hockey and pool) •	
that charge a fee for one complete game.

Coin pushers and slot machines are examples of medal games.•	

Redemption games include alley roll and whack-a-mole; these games give tickets to be traded •	
for prizes.

Claw cranes are in the game category of merchandisers, which give the prize directly to •	
the player.

The pinball machine is another popular arcade game. This style game is in the same category •	
as the medal and redemption games, but dates back (in its current form) to the 1950s.

These arcade games became quite popular at video arcades in the early to mid-1990s, just after the peak of video
arcades themselves and are still used and developed for modern arcades.

Note ■ Arcade owners began to use coin-op, redemption, medal, and merchandiser games to keep the arcade industry
alive after the widespread availability and acceptance of game consoles and personal computers lowered arcade
attendance. I’ll refer to these types of games as arcade games to avoid any confusion with video arcade games, such as
Space Invaders, Centipede, and Pac-Man.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

210

Arcade games are akin to robotics development because of the heavy use of motors and sensors to measure and
move game play along. Both arcade and video arcade games rely heavily on the game play being balanced, requiring
them to be simple to understand and play but difficult to master. Users must be able to easily identify the game
mechanics of an arcade game before choosing to play. The game whack-a-mole, for example, has a mechanism that
is easily identifiable by both the game’s descriptive name and watching others play—but it has a challenge that pits
hand-eye coordination to speed. The game play in home consoles and on personal computers can spend more time
teaching a user the unique mechanics of the game in the early stages. An example of a game that teaches a complex
game mechanism in the early stages is Valve Corporation’s first Portal game; the game uses each level to teach only
one part of the mechanism at a time, until all the basic components can be used to solve more difficult puzzles.

The development of arcade games employs a different skill set than that of computer or console games. The
skills of problem development, storytelling, programming, and graphic design are common among most digital game
development fields. Arcade games make use of carpentry, hardware integration, and electrical engineering. Carpentry
is used to make the cabinets that house the actual arcade games. The Behemoth game company, makers of
Castle Crashers, posted a video that demonstrates an arcade cabinet being constructed in time lapse
(see www.youtube.com/watch?v=MJ6Lp2GqHoU), to give you an example of how much is involved. Carpentry is a skill
that can be acquired with a little practice and a trip to the local book store for a plethora of information on the subject.
Arcade game cabinets are usually the flashiest part of the entire game, designed to entice people to play. They usually
make sounds, blink lights, and are covered in graphics or eye-popping colors.

The distinctly average power of a microcontroller’s capabilities for complex video graphics is why other methods
of attracting the player are used such as intense cabinet design flashing lights and sounds to make games attractive
for play instead of relying on the game graphics the way computer games do. Arcade game cabinets also integrate the
game surface and playing area into the cabinet; pinball and alley roll are great examples of the game surface being
included in the cabinet. Video arcade games use cabinets for reasons similar to arcade games, but the game play is
performed on a screen mounted in the cabinet.

The skill of hardware to software integration will be familiar to any Arduino developer that uses sensors, motors,
and lights in other developments. Arcade games can perform many types of hardware integration—for example, using
sensors to determine if an object has reached a goal. Game play can use motors and solenoids to manipulate and
move physical objects. LED displays can be used to keep score. Each arcade game has different requirements on the
type of hardware needed and how it connects.

Another type of game that is well-suited to the Arduino is the board game. Using electronics in a board game is
great for adding game depth that may not be available via any other method. Milton Bradley’s Omega Virus and Dark
Tower are both classic games that demonstrate how electronics can be integrated into a board game, adding a unique
game play experience.

Electronics can also be used in pen-and-paper role-playing games (RPGs)—for example, you could use the
simulated RFID reader from Chapter 6 in a cyber-style RPG to have players “hack” and intercept access codes for
certain game elements. Vintage video games have seen a comeback in the form of stand-alone controllers that
integrate one or more games into the controller to provide an easy connection to a display.

This chapter shows you how to build two proof-of-concept games: one that uses 11 LEDs, 11 resistors, and
a button; and one that uses the Gameduino and a button.

The games are designed to be simple while demonstrating concepts of game development. This chapter’s
hardware requirements are an Arduino Uno or compatible device with a standard pin interface, some LEDs and
buttons, and a Gameduino. The Gameduino is graphic coprocessor shield that enables the Arduino to control sprite
based games. The Gameduino shield can be acquired at many online retailers, such as Adafruit Industries, Seeed
Studio, and SparkFun electronics.

http://www.youtube.com/watch?v=MJ6Lp2GqHoU

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

211

A Simple Game
Game play is one of the most important parts of game development and is crucial to making a fun and entertaining
game. After a game concept has been brainstormed, building a proof of concept of a game is an important step to iron
out details and mechanics. The proof of concept can help determine if the game is feasible early in the development
process. Simple tests of working concepts are also useful to figure out if the challenges are too difficult for anyone
to complete. Testing concepts is vital, especially if a game mechanism is going involve components that rely on
physics or mechanical contraptions such as a ball toss or claw retrieval. You should develop each game mechanism
as best you can before integrating it with other systems, building each and testing for bugs before setting the final
product into motion. The extra components that make up an arcade game (such as artwork, coin mechanisms, ticket
dispensers, and attractive cabinet accoutrements) can be integrated later in the development process.

The game that you will set up in section is a simple game that challenges reaction time by making the player stop
a sweeping series of LEDs at a specified point within the series. The game is called Stop It, and the main part of this
game is the display with the sweeping of a single-light LED from one side of a series to the other. The challenge for
this game is the amount of time a player has to react. The game appears to move faster when the time a single LED
is on before the next one lights up is lowered. To achieve a level completion the player has to press a button while a
specified LED is on. Stop it will use 11 LEDs and a single button; the winning LED is in the middle, and five LEDs are
on either side.

After each level is complete or micro-win, Stop It will decrease the time each LED is on before moving on to
the next stage. A micro-win will flash an alternating pattern on the LEDs, and after 11 micro-wins, a more elaborate
pattern will flash, signifying a big win. If an attempt fails, Stop it will reset back to the first level, and the succession
to the big win will be restarted. The flash of the LEDs is the reward for the proof of concept. If Stop it were to be
developed in to a full arcade game, the reward would have to be greater than just flashing lights. For example, you
might add 1 point to a score or money to a jackpot for every micro-win, and reward the player with tickets for each
big win. Stop it will also need a risk for the user to place up front to attempt to play. For example, a number of tokens
could be accepted via a coin acceptor before the player is allowed play.

Proof of Concept
Stop It’s proof-of-concept setup is described in Figure 11-1, with 11 1kW resistors connected to 5V power and then to
the anode side of 11 LEDs. The cathode side of each LED is connected to pins 3 through 13—one cathode per pin. The
LEDs will be on when the pin is pulled low, instead of when the pin is high. Turning on the LEDs by grounding is a best
practice for lowering the amp draw though the microcontroller. A button is connected to ground on one side and pin 2
on the other so that the interrupt can be utilized to determine when the player has made an attempt to win. Serial is
not used for this code, but the pins are left alone so that the serial can be used to communicate to other modules. It is
possible to use a couple of shift registers to lessen the pin usage of the Arduino and allow for other devices to connect to
digital pins. This example does not use shift registers, keeping the parts requirement to a minimum.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

212

There are two common methods to accomplish the sweep of an LED in a series:

The first uses an array to hold the state of each LED and uses a loop to perform a series of •	
digital writes to each individual pin.

The other method is to directly manipulate the pin registers.•	

The register method is used for Stop it because it simplifies the program’s logic. Register manipulation was
introduced in Chapter 6 to create a fast 10-bit digital-to-analog converter. The method for changing the pin state is the
same: a single integer is used to hold the pattern that will be used to turn on or off the pins using bitwise shifts along
with AND masks to turn the entire register at once. Stop it’s code, shown in Listing 11-1, is broken up into 11 parts and
contains 12 functions.

Coding Stop It
Part 1 of Listing 11-1 sets up the variables for Stop it and the pins’ data direction. The proof of concept has five
variables in total: one integer, one byte, and three Booleans. The integer is used to manipulate the pattern of the LEDs;
this variable is used for everything that will be displayed to the user, and also to determine the direction of the sweep
and whether a win has been archived. The byte variable is used to determine the level and to increase the speed of the
sweep. The Booleans are used as flags to tell what direction the sweep needs to travel, and tell if a win condition has
been achieved and if the button has been pressed.

Figure 11-1. Stop it’s proof-of-concept setup

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

213

Listing 11-1. Stop It’s Code, Part 1 of 11

int LEDshift = 0x0001; // holds the LED pattern
boolean RightLeft = false; // true for right
boolean Win = false; // when true, a win state has be achived
boolean button = false; // flag if the button has been pressed
byte level = 0; // curent level holder

void setup() {
 DDRD = DDRD | B11111000; // pins 3 - 7 set data direction
 DDRB = DDRB | B00111111; // pins 8 - 13
 digitalWrite(2,HIGH); // pull up so the input can be signaled on a low transition
}

The code for part 2 of Stop it is the function to perform the LED sweep. The moveLED() function is called from
the main loop. The function first checks if the ON LED is at the first or last LED of the display. The check is performed
by AND masking the LEDshift variable. If the mask equals anything other than zero, then the check is true, and
depending on which mask is true, you set the flag RightLeft to the proper direction. The function then checks the
RightLeft direction variable to bit shift the LEDshift over one every time the moveLED() function is called. The
function then calls the displayLED() function.

Listing 11-1. Stop It’s Code, Part 2 of 11

void moveLED() {
 if (LEDshift & 0x0002) {
 RightLeft = false;
 }
 if (LEDshift & 0x0800) {
 RightLeft = true;
 }
 if (!RightLeft) {
 LEDshift = LEDshift << 1;
 }
 if (RightLeft) {
 LEDshift = LEDshift >> 1;
 }
 displayLED();
} // end moveLED

The displayLED() function is part 3 for Listing 11-1. This function is responsible for changing the actual pin
states to control the LEDs. When the displayLED() function is called, the LEDshift variable is parsed and split to
match to the pins that are connected to the LED array. To get the LEDs that are connected to pins 3 through 7, the
LEDshift variable is masked against a number that correlates to the position of the bits needed, and the result is then
shifted to the left by two positions so that the final result is in the proper position for the pins. Before the total result is
written to the register, a NOT operation is performed so that the pins will be in the proper state for the LED.

Listing 11-1. Stop It’s Code, Part 3 of 11

void displayLED() {
 PORTD = ~((LEDshift & 0x003E) << 2); // format and place the proper bits into the registers
 PORTB = ~((LEDshift & 0x0FC0) >> 6); // portd = low portb = hi
}

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

214

Part 4 is the function that will be used for the interrupt when the player attempts to stop the LED. This function
is held in a loop while the button attached to pin 2 is depressed. The while loop of this function helps to debounce the
interrupt because delays do not work inside of interrupts. The function sets the button flag, signifying that the player
has made an attempt to stop it. A check of the LEDshift variable verifies that the winning LED is on; this is done by an
AND mask. If the proper LED is on, the flag is set to true; otherwise, the flag remains false and will trigger a win or
a loss condition when returning from this function.

Listing 11-1. Stop It’s Code, Part 4 of 11

void Button(){
 while (digitalRead(2)== LOW) {
 button = true;
 if ((LEDshift & 0x0040)) {
 Win = true;
 }
 else {
 Win = false;
 }
 } // end while
} // end button

Part 5 is the function to check if a button event is a win or a loss. This function is called from the main loop only
when a button flag is true. The level gets incremented if a win or a big win is achieved. A big win is achieved when
the LED has been stopped 11 successful times. This function calls the flashWin() function for every successful stop
and the BigWin() function for 11 in a row. The level is incremented for every win. If the player does not stop the LED
on the winning point, the function will call the notWin() function to reset the levels and provide the player with the
feedback that they have lost.

Listing 11-1. Stop It’s Code, Part 5 of 11

void checkWin() {
 if (Win) {
 if (level < 10) {
 flashWin();
 }
 if (level >= 10) {
 BigWin();
 }
 IncreaseLevel();
 }
 if (!Win) {
 notWin();
 }
 resetPlay ();
} // end checkWin

flashWin() is the function that makes up part 6 of the code for Stop it. This function is a reward for the player.
A binary pattern is first loaded in to the LEDshift variable of alternating 1s and 0s. Then a loop is used to invert the
LEDshift variable, turning 1s into 0s and vice versa. The pattern is displayed by calling the displayLED() function and
waiting until the player can see the pattern before continuing through the loop a total of ten times.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

215

Listing 11-1. Stop It’s Code, Part 6 of 11

void flashWin() {
 delay (100);
 LEDshift = 0xFAAA;
 for (int i = 0 ; i < 10; i++) {
 LEDshift = ~LEDshift;
 displayLED();
 delay (100);
 }
} // end flashWin

The BigWin() function of part 7 is called when the player makes 11 successful wins. This function first calls the
flashWin() function and then loads a new pattern, starting from the center LED and radiating outward, turning on all
the LEDs. The function does this four times before finishing up with another flashWin().

Listing 11-1. Stop It’s Code, Part 7 of 11

void BigWin () {
 flashWin();
 for (int i = 0 ; i < 4 ; i++) {
 LEDshift = 0x0040; // turn on the center LED
 displayLED();
 delay (100);
 for (int i = 0 ; i < 6 ; i++) {
 LEDshift = LEDshift | (1<< 5 - i); // radiate from the center by a logical OR of the 1s
 // into the
 LEDshift = LEDshift | (1<< 7 + i); // LEDshift variable
 displayLED();
 delay (25);
 }
 }
 flashWin();
} // end BigWin

Every game has to have a condition for not winning. Part 8 of Listing 11-1 is the notWin() function. The notWin()
function resets the level back to zero and sweeps the LED from right to left. The loop to display the pattern shifts the
LEDshift variable to the left by 1, and then increments the variable till the loop is finished.

Listing 11-1. Stop It’s Code, Part 8 of 11

void notWin() {
 level = 0;
 delay (100);
 LEDshift = 0x0001;
 for (int i = 0 ; i < 11; i++) {
 LEDshift = LEDshift << 1;
 LEDshift++;
 displayLED();
 delay (100);
 }
} // end notWin

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

216

Part 9 is the DspLevel() function, which informs the player what level they are now on. This function is called
before the game starts the next level. This function works in the opposite way to the notWin() function, by shifting
from left to right. In the loop, 1 is added to the high bit of the LEDshift variable by an OR of 0x1000, then bit shifting the
variable LEDshift to the right by 1. The loop will run as many times as there are levels.

Listing 11-1. Stop It’s Code, Part 9 of 11

void DspLevel() {
 LEDshift = 0x0000;
 for (int i = 0 ; i <= level ; i++) {
 LEDshift = LEDshift | 0x1000; // add 1 to the high bits of LEDshift
 LEDshift = LEDshift >> 1 ;
 displayLED();
 delay (50);
 }
 delay (500);
} // end DspLevel

In part 10 of Listing 11-1 are the two functions to handle the resetting of game play for each level after the reward
and loss patterns are displayed. Listing 11-1 also includes a function to increment the level after a win condition. The
resetPlay() function first calls the DspLevel() function, and then resets all of the game condition variables to their
initial state. The level variable is not reset in this function, but is a condition of a loss.

When the IncreaseLevel() function is called, the level variable is incremented by 1. This function also handles
the reset to level 0 if the player can make it past level 15; the reset is done by an AND mask. The level variable helps set
the speed of the LED sweep and needs to be kept below a certain number; otherwise, the time the LED stays on goes
negative and can halt the Arduino. The level reset in this function is also independent of the loss condition reset.

Listing 11-1. Stop It’s Code, Part 10 of 11

void resetPlay () {
 DspLevel();
 Win = false;
 button = false;
 LEDshift = 0x0001;
 RightLeft = false;
}

void IncreaseLevel() {
 level++;
 level = level & 0x0F;// reset level when greater than 15
}

The last function (shown in part 11 of Listing 11-1) is the main loop that sets the game into motion and ties
together all the functions of Listing 11-1. The first thing the loop() function does is to detach the interrupts so that the
player cannot cause false wins or losses. The interrupts are not turned off by the noInterrupts() function, because
that would stop the delay() function from working. Once the interrupts have been turned off, the button press and
win state flags are checked for handling. After the check for a win or loss, the loop() function moves the ON LED to
the next LED in the current direction it is traveling. The moveLED() function handles the movement and direction
changes of all the LEDs. After the new LED is on, the interrupt for the button() function is turned back on, followed
by a call to a delay.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

217

The time the delay provides is the amount of time that any one LED is on before going to the next LED in the
display; this is also the amount of time the player has to react to stop the LED sweep. The time for the delay is set
by subtracting the level times 6 from 100. With the first level being equal to 0, the delay will be 100 ms, and every
subsequent level shortens the time by 6 ms. the big win occurs after level 11 has been passed; that level has a time of
40 ms between LEDs. This delay sets the difficulty of getting a win a larger delay make the game easier and smaller
is more difficult. The difficulty needs to be balanced for the intended audience, and is usually determined by age for
arcade games. Games that are for children are often really easy for adults.

Note ■ It is important that the delay never goes negative; otherwise, the program will freeze up. Stop it allows a level
up to 15 before resetting at a delay 10 ms; at this delay time, it is unlikely that a human player can achieve a win.

Listing 11-1. Stop It’s Code, Part 11 of 11

void loop() {
detachInterrupt(0);
if (button == true) {
 checkWin();
}
moveLED();
attachInterrupt(0, Button, LOW);
delay (100 - (level*6));
}

Verifying the Code
Stop it is ready to play after an Arduino is connected to the LEDs and button, as per Figure 11-1 (shown previously
in the chapter). Upload all 11 parts of Listing 11-1 as a single Arduino sketch. Once the upload is finished, the game
should start sweeping one LED from one side of the display. Depending on the color of the LEDs used, the display
may be reminiscent of the front of a certain black 1980s sports car with artificial intelligence.

Begin the game by testing your skill, and try to Stop It on the center LED by pressing the button when the center
LED is ON. The code should react as describe earlier. Since it may not be easy to test all the way to a big win, this game
has a developer (or cheat mode) built in. To enter developer mode and ensure that the code is behaving properly,
connect the ground side of the switch to the cathode side of the winning LED. Developer mode will make the button
only trigger the interrupt when the center LED is on. Developer mode makes it possible to cycle though all of the
levels and back to the first one.

Dirty Little Tricks,
Not to detract from the excitement of developing arcade games, but it is worth mentioning the unfair advantage
known as rigging that some arcade games might have built into them. Such rigging only allows prizes to be won
after certain conditions are met other than those presented within the game (some games never allow prizes to be
won at all). This is like the belief that slot machine will only pay out a jack pot when it has received a certain dollar
amount. Because arcade games are not regulated the same way as gambling machines, the possible use of rigged
mechanisms has led to some controversy about legalities. Rigging is an unfortunate practice that takes away from a
game’s entertainment value and in some places can be illegal. Rigging may come up when developing a redemption
or merchandiser game for a client.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

218

It is best practice to make a game as fair as possible but it is up to the developer’s judgment. Players will feel
cheated when a rigged game is discovered. If the players have an enjoyable gaming experience, they will return to
play more games. Games can be challenging, and as long as the players skill is the only factor keeping the player
from winning.

As a game developer be-careful about developing games that are chance based and give prizes, as this can be
considered a gambling machine and is highly regulated. But don’t be afraid to develop games that provide prizes;
it is usually the monetary value of the prize and the frequency that a prize can be won that determines if a game is
classified as a gambling machine. A game that always gives a ticket, a piece of candy or a small toy just for starting
the game and the game gives more prizes out the longer the player plays is usually not considered gambling because
something is awarded for every play and in some cases just putting in a token will award some tickets. Alley roll is an
example of this; most alley roll games will provide one ticket for getting the ball to the other end, but if the ball makes
it into a scoring ring, more tickets are awarded. However, it is always best to research the laws and regulations when
building games that give out prizes.

Adding Better Displays and Graphics
A lot of unique games can be made with displays made of arrays of LEDs, mechanical flip dots, character LCDs, or
small LCD panels. The games made with displays of these styles can sometimes lack the extra shine that may be
desired from a television or a computer monitor. The Arduino with a couple of resistors can drive a television using
the TV out library (www.arduino.cc/playground/Main/TVout), but is only capable of providing black-and-white
images and only works with devices that have an RCA connection. To have the power to drive more complex graphics,
additional hardware—a graphics processing unit (GPU)—is required.

The Gameduino was designed to be a GPU for the Arduino and is a shield that provides a graphics platform that
can create complex graphics and animations. The Gameduino’s processor is programmed in to a Xilinx Spartan Field
Programmable Gate Array (FPGA) and can connect to any microcontroller that is capable of SPI communication, even
though it is packaged as a standard Arduino shield. The Gameduino can output video to a VGA-comparable display
at 400×300 pixels with 512 colors, and can fully draw sprites, bitmaps, and backgrounds and generate stereo sound.
The Gameduino is compatible with computer monitors with at least 800×600 resolution. The graphics capabilities of
the Gameduino are very similar to 1980s video game consoles and older arcade games. The Gameduino also includes
a secondary coprocessor that is independent of the main graphics functionality and is used to generate bitmaps for
wireframe effects and control the video registers to create split-screen games.

The use of the Gameduino offloads all the graphics and display functions from the Arduino, leaving the Arduino
free to control the game logic, handle user input, and track game progress. The Arduino initializes the Gameduino
by copying to RAM all image data, sound data, and, if necessary, programming for the secondary processor to the
Gameduino’s memory. The Gameduino has 32 KB of internal memory and is split up into background images, sprite
images, and program space.

This chapter just introduces the Gameduino basics to show you how to build a functional game. Gameduino
reference material is available at www.excamera.com/sphinx/gameduino/ and has samples and tutorials for more
complex game feature, such as split screen and 3D wireframe. Download the quick-reference poster for working
with the example in this section from the above site. The Gameduino is available at many online retailers, such as
SparkFun Electronics, Adafruit Industries, and Jameco electronics.

Gameduino Library
The Gameduino is a SPI device that you can run the with standard SPI communication practices mentioned in Chapter 10.
But for ease of getting games working quickly, the Gameduino library will be used for this section, and is available on
the Gameduino’s website (www.excamera.com/files/gameduino/synth/sketches/Gameduino.zip). The library installs
in the standard Arduino location and needs to be modified to work with the Arduino 1.0.1 and above IDE.

http://www.arduino.cc/playground/Main/TVout
http://www.excamera.com/sphinx/gameduino/
http://www.excamera.com/files/gameduino/synth/sketches/Gameduino.zip

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

219

To make the Gameduino library compatible, the include "Wprogram.h" in the beginning of GD.cpp needs to be
changed to include Arduino.h; this can be done in any text editor.

The following list is a reference of the most common functions that will be used from the Gameduino’s library.
All of the functions can be called with a preceding GD. before the function call.

•	 begin(): Starts a connection to the Gameduino; returns true if successful.

•	 rd(address): Returns a byte read from the Gameduino’s memory located at address.

•	 wr(address, data): Writes a byte of data to the Gameduino’s memory at specified address.

•	 rd16(address): Same as rd(), but reads 16 bits from memory, instead of 8 bits, at address
and address +1.

•	 wr16(address, data): Writes 16 bits to memory.

•	 fill(address, data, amount): Copies 1 byte to consecutive memory addresses
up to amount.

•	 copy(address, data pointer, amount): Copies data from the Arduino’s memory
to a Gameduino address.

•	 setpal(palette, RGB): Sets the character color palette.

•	 RGB(R, G, B): Converts RGB byte values to 15-bit encoding for the Gameduino.

•	 sprite(sprite #, position x, position y, image #, palette, rotation, collision):
Tells the Gameduino to draw a sprite to the display. Table 11-1 describes the parameters for
drawing sprites to the display.

Table 11-1. Arguments for the sprite() Function

Parameter Description

sprite # Onscreen sprite number that addresses the individual
sprite value between 0 and 255

position x Horizontal sprite position value between 0 and 511; 0 is
the left edge of screen

position y Vertical sprite position on the screen value between 0
and 511; 0 is the top edge of screen

image # Selects a background sprite to display from The
Gameduino’s RAM value between 0 and 63

palette Color palette to use when rendering the sprite value
between 0 and15

rotation Sets the rotation and flip of the sprite

collision Sets the collision detect flag

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

220

•	 sprite2x2(sprite #, position x, position y, image #, palette, rotation,
collision): Sets a 2×2 sprite to be drawn at the center four corners; uses same parameters
as sprite().

•	 ascii(): Loads Gameduino’s standard font.

•	 putstr(position x, position y, string): Prints a string encapsulated in quotes at the
position (x, y). Needs ascii() to be run first to load the default font.

•	 voice(voice #, wave type, frequency, left volume, right volume): Sets a tone to be
played out of the Gameduino’s audio port. Table 11-2 describes the voice() parameters.

Table 11-2. Arguments for the voice() Function

Parameter Description

voice # Individual hardware voice number used to output
sound; takes a value between 0 and 63

wave type Waveform (0 is sine wave, 1 is noise)

frequency Frequency in quarter-Hertz (e.g., 100 Hz is 400)

left volume, right volume Amplitude of the wave output per channel; takes a value
between 0 and 255; total volume for all voices should be
less than or equal to 255

Some of the functions require a memory address to be able to read or place data into the Gameduino. The library
also defines some keywords that are helpful when calling functions that deal with memory addresses. Table 11-3
provides the name, address, and descriptor; the keywords referenced are the common memory locations for
developing games.

Table 11-3. Useful Keywords Specific to the Gameduino’s memory sructure and begging adresse locations.
memory addresses * Byte length = total bytes in memory

Keyword Address Description

RAM_CHR 0x1000 Screen characters (256 ×16 = 4096 bytes)

RAM_PAL 0x2000 Screen character palette (256×8 = 2048 bytes)

RAM_SPR 0x3000 Sprite control (512×4 = 2048 bytes)

RAM_SPRPAL 0x3800 Sprite palettes (4×256 = 2048 bytes)

RAM_SPRIMG 0x4000 Sprite image (64×256 = 16384 bytes)

PALETTE16A 0x2840 16-color palette RAM A (32 bytes)

PALETTE16B 0x2860 16-color palette RAM B (32 bytes)

PALETTE4A 0x2880 4-color palette RAM A (8 bytes)

PALETTE4B 0x2888 4-color palette RAM A (8 bytes)

VOICES 0x2a00 Voice controls

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

221

A New Stop It
Building on top of other working projects is a great way to help simplify the development of more complex projects.
The game for this section takes the idea of Stop it and expands it into the second dimension. The new game, called
Stack It, as almost the same challenge as Stop It, but instead of requiring the player to stop a scrolling LED, Stack it
uses scrolling sprites that need to be stopped when the current moving sprites are in the same position as the past
sprites. Stack it speeds up and moves to the next level up the screen instead of displaying the level between each win.

There are two mechanisms of difficulty:

The speed of the row•	

The number of sprites that need to be matched•	

If the player misses the position of the previous row, the game removes sprites for the next level until the player has
no more sprites left to play. Figure 11-2 shows the game play of Stack it with the last level still in play. The first level is
always a gimme; it allows the player to decide where to start the stack and then continue through 16 levels to a big win.

Figure 11-2. Stack it’s game play

The hardware setup for Stack it includes the Gameduino and a button; Figure 11-3 shows the setup for the
Arduino. You need to plug the Gameduino into the Arduino, making sure to align the pins and one lead of a button
connected to ground, and the other lead connected to pin 2 in the headers of the Gameduino. The Gameduino only
uses digital pins 9, 11, 12, and 13. Pin 9 is the slave select and is unavailable for any other function. Pins 11, 12, and 13
are the standard SPI connections and can be used to connect other SPI devices, such as SD cards. The power for the
Gameduino comes from the 3.3V, 5V, and ground of the Arduino and requires no extra connectors. The Gameduino
can be connected to a monitor or a television with a VGA port.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

222

Note ■ Some televisions may not be compatible with the Gameduino’s signal. For best results, use a monitor that is
capable of 800×600 resolutions and has 4:3 aspect ratio. You can try a vGA-to-hDMI converter if no analog display inputs
are available.

Art
When developing a game, the art and graphics usually don’t get finished till the all the game mechanisms are working.
On the Gameduino, however, some graphics need to be available for display so that the game mechanisms can be
developed. The graphics can be a placeholder or a simplistic version of what might be the final graphic. If game is
a side-scroller, the player controls a main character that is an animated sprite. For initial development, the sprite can
be just a single frame of the animation. Stack it only uses one sprite and the background doesn’t move.

Art for the Gameduino uses a special format that needs to be converted from an existing file or hand coded. Each
sprite is 16×16 pixels. The Gameduino does not store each sprite with the color information, but instead uses
a separate color palette and draws sprites to the screen in a way similar to color-by-numbers. The Gameduino offers
three palette types 4, 16, or 256 and describe the amount of different colors that the palette can hold. The use of the
palettes saves memory because each color needs 16 bits and is in ARGB1555 format and if the color information was
saved in every pixel, 64 sprites would need 32 KB of memory, as compared to the 16.5 KB used by the separate color
palette. Figure 11-4 illustrates the ARGB color format used to create color; bit 15 is the flag for transparency and each
of the five bits for R, G, and B. The Gameduino is little-endian when it comes to memory; the lower bits (0 through 7)
need to be copied to the address and the higher bits (8 through 15) are copied to the address plus 1.

Figure 11-3. Stack it’s hardware configuration

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

223

Figure 11-4. ARGB 1555 color format

Figure 11-5. Stack it’ s sprite with palette coding

The sprite used for Stack it is illustrated in Figure 11-5, using the coding to the 4-color palette. Each sprite maps
1 byte to the color palette per pixel. One sprite can be made with a 265-color palette, two sprites with a 16-color
palette, and four sprites with a 4-color palette. Using the 4-color palette allows more sprites to be in memory, because
it takes 2 bits to map to a color, and 8 bits are available. Each 2 bits of the sprite map can describe a different color
used; this is good for space saving and making animated sprites. When multiple sprites are combines in one map, they
can be added to the screen by changing the palette argument when calling the sprite() function. Larger graphics can
be made by placing two or more sprites side by side on the screen.

Figure 11-6 illustrates the color palette used for Stack it. It consists of the colors black, red, green, and blue. Any
color value can be used, however There is a limit to amount of different colors that the palette can hold. Stack It’s
sprite only uses three of the four colors available. You can give sprites transparent pixels by setting bit 15 to 1 on one
of the colors. When transparency is used, the color information for R, G, and B are ignored and only one color needs
to be transparent. Transparency allows for background colors to show; this is useful for non-square character sprite
move over a changing background the background.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

224

The Gameduino Tools Online page (http://gameduino.com/tools) offers three great tools that convert image
files to the proper coding to avoid hand coding sprites, backgrounds and lossy images. The tool also provides an
Arduino sketch to quickly check the sprites on the display before putting them in a game. The tool provides a .h file
that contains the converted image. The three types of conversions tools background, sprite sheets and lossy image
conversion requires an image to convert. The sprite sheet tool also has options for the sprite size and color palette type.

The easiest way to get started making sprites is to use GIMP (www.gimp.org/)—free, open source image
manipulation software that is capable of creating PNG files. When creating a new sprite image, it is best to work at
the actual pixel size and with dimensions in multiples of 16. Multiple different sprites can be made in one file, and the
conversion tool will divide them up according to the settings. Note that the conversion tool may not always get
the colors perfect and manual manipulation of the palette may be required in the Arduino sketch.

Coding Stack It
To get started coding Stack it, create a new sketch and add a new file within the Arduino IDE by pressing Ctrl+Shift+N,
and enter cube.h when prompted. Listing 11-2 contains the converted image from the Gameduino image tool—the
variables names in cube.h are generated by the image tool. Listing 11-2 uses only the image information and does
not include the function that is autogenerated by the image tool. Two static arrays are declared in cube.h. The first
is cube_sprimg[], which is the mapping to the color palette, and the other is cube_sprpal[]. The bytes set in both
cube_sprimg[] and cube_sprpal[] are in the order they will be loaded into the Gameduino’s memory. Because of the
little-endian mode of the Gameduino, the palette has the lower byte of the color set before the higher byte.

Listing 11-2. Sprite Code for Stack It

static PROGMEM prog_uchar cube_sprimg[] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x01,0x01,0x01,0x01,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x01,0x01,0x01,0x01,0x01,0x01,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x01,0x01,0x01,0x01,0x01,0x01,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x01,0x01,0x01,0x01,0x01,0x01,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x01,0x01,0x01,0x01,0x01,0x01,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x01,0x01,0x01,0x01,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
};

static PROGMEM prog_uchar cube_sprpal[] = {
0x00,0x00, 0x00,0x7c, 0xe0,0x03, 0xff,0xff,
};

Figure 11-6. Four-color palette using black, red, green, and blue (from left to right)

http://gameduino.com/tools
http://www.gimp.org/

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

225

With the sprite for Stack it ready, the game-play code can be added. Stack it shares a similar concept with Stop it
and also shares similar coding methods for the game mechanisms. Listing 11-3 is entered in to the main part of the
sketch and is broken up into seven parts. Part 1 of Stack it sets up the variable decorations, includes, and the setup()
function. The Gameduino library (GD.h), SPI library (SPI.h), and cube header (cube.h) needs to be included to have
access to the functions used by Stack It. The cube.h file is included with quotes instead of < >, signaling the compiler
to look for a local file in the sketch folder instead of searching for the header file in a library location. The order of the
library includes is important; the SPI.h include comes before cube.h, and GD.h is the last include.

Listing 11-3. Stack It’s Sketch, Part 1 of 7

#include <SPI.h>
#include "cube.h"
#include <GD.h>

long cubeMove[18];
boolean RightLeft;
boolean Win = false;
boolean button = false;
int level = 0;

long initPattern = 0x0000001f;

void setup() {
 pinMode(2,INPUT);
 digitalWrite(2,HIGH);
 GD.begin();
 GD.copy(PALETTE4A, cube_sprpal, sizeof(cube_sprpal));
 GD.copy(RAM_SPRIMG, cube_sprimg, sizeof(cube_sprimg));
 resetPlay();
} // end setup

The integer that was the LEDshift variable in Stop it is changed to a long array; this is to account for the increased
number of elements that can be displayed on the screen. The array is declared as size 18 so that every level can be
accounted for when displaying the sprites. The flags for the win, direction, and button press serve the same function
as those used in Stop It. A variable that stores the initial pattern that will be used for the first level of the game is
created here. The binary pattern of the variable is used when displaying the sprites. The pattern of the bits can be
used to make the game more challenging the more bits that are placed consecutively will provide an easier challenge,
allowing for the player to miss the target more often. The bit pattern does not have to be consecutive making the
game more interesting. Remember that the Gameduino can only have 256 sprites on the screen at any given moment,
so choose an initial pattern that will keep the sprite count below 256. There are 17 levels of Stack it, but 18 array
positions—one of the array positions is used to create a base at the bottom of the screen below the first level and will
use 24 of the available sprites.

The setup() function prepares the Arduino pin that will be used for the button, and is similar to the setup
function as used in Stop it. The setup function adds the initialization of the Gameduino and copies the sprite and
palette to memory. The memory locations used is the first four-color palette and the start of the sprite RAM section.
The image is copied from the cube.h variables. The final step in the setup() function is to call resetPlay() to make
sure the game is ready to play.

The function for part 2 is responsible for shifting the row of sprites from one side of the display to the other. The
RowShift() function is almost identical to the moveLED() function for Stop it; it checks for when the bit-shift reaches
the existents of the screen changing the bit-shift direction. The only change accounts for the increased bits used for
the position, and the level determines what position of the array is currently in play.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

226

Listing 11-3. Stack It’s Sketch, Part 2 of 7

void RowShift() {
 if (cubeMove[16-level] & 0x00000001){
 RightLeft = false;
 }
 if (cubeMove[16-level] & 0x00800000){
 RightLeft = true;
 }
 if (!RightLeft){
 cubeMove[16-level] = cubeMove[16-level] << 1;
 }
 if (RightLeft){
 cubeMove[16-level] = cubeMove[16-level] >> 1;
 }
} // end row shift

The function that is responsible for displaying the game to the player is the same in functionality as the display
function for Stop it, but is executed differently. The use of the Gameduino allows for dynamic positioning of game
elements within the 400×300 pixel viewing area, and there are no registers to directly manipulate. Part 3 is the function
for displaying all the sprites to the screen. The cubeMove array is used to hold the patterns that need to be displayed.
Every time the displaySprites() function is called, it will display all the current values of cubeMove; A value of 1
equals a sprite, and a sprite will be displayed according to position within the array. The array is two dimensional
there is a vertical and a horizontal component; the array position is the vertical and the individual bits within the
variable makes up the horizontal position. Stepping through the array is done with one for loop, while a nested for
loop shifts though the bits of the variable. When there is a 1 in the variable, a sprite is displayed, and when there is a
0, the loop continues to the next step. The position of the sprite on the screen is determined by what step each for
loop is at, the sprite is 16×16 pixels. The step count of the for loops is multiplied by 16 so the sprites will be place side
by side on the screen. A counter that is incremented when a 1 is found to keep track of the number of sprites being
displayed and is used to create a dynamic sprite count for the Gameduino.

Listing 11-3. Stack It’s Sketch, Part 3 of 7

void displaySprites() {
 int spriteNum = 0; // start sprite count at 0
 for (int y = 0 ; y < 18 ; y ++) { // loop though the array for y positon
 for (int x = 0 ; x < 24 ; x ++) { // loop though the variable for x positon
 if ((cubeMove[y] >> x) & 0x00000001) { // check current variable position for a 1
 GD.sprite(spriteNum, (x* 16)+7, (y*16)+7 ,0, 8 , 0);
 spriteNum++;
 } // end if
 } // end for loop x
 } // end for loop y
} // end displaySprites

The buttonInterrupt() and WinState() functions implement part 4. buttonInterrupt() is called when the
player attempts to win the current level and move on to the next. The interrupt is activated in the same fashion as
in Stop it. buttonInterrupt() waits in a loop while the button is depressed and calls the WinState() function to
determine if the player has won or not. The check for a win condition has been moved to a separate function to allow
for possible other functions to check for win conditions outside of the player’s control. A win state is true if there is
at least 1 bit in common between the current level and the prior level. The first level of the game is compared against
the foundation bits in the cubeMove array. The first level is always a gimme, and allows the player to decide where the
stack starts. If there are no common bits, the win state is false and the game is reset.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

227

Listing 11-3. Stack It’s Sketch, Part 4 of 7

void buttonInterrupt () {
 while (digitalRead(2)== LOW) {
 WinState();
 }
} // end buttonInterrupt

void WinState() {
 button = true;
 if ((cubeMove[16-level] & cubeMove[17-level])) {
 Win = true;
 }
 else {
 Win = false;
 }
} // end WinState

Part 5 performs actions based on the win state when the player presses the button and increases the level.
If the win state is true, then the prior level is masked with the current to determine the amount of sprites that are in
common. If some of the sprites are not directly above the prior level, they get removed, and the new amount of sprites
is copied to the next level, making it more difficult for the player along with decreasing the time the player has to react.
If the win state is false, the game simply resets. The IncreaseLevel() function works like the one for Stop it, but the
masking of the level count is unavailable because of the array. An if statement is used in place of the mask, and when
the level reaches 17, the final pattern within cubeMove() is displayed and the game is reset. A reward function can be
called at the point the level is maxed.

Listing 11-3. Stack It’s Sketch, Part 5 of 7

void checkWin() {
 if (Win) {
 // check prior level and set curent level to any misses and copy to next level
 cubeMove[15-level] = cubeMove[16-level] = cubeMove[16-level] & cubeMove[17-level];
 IncreaseLevel();
 }
 if (!Win) {
 resetPlay ();
 }
 button = false;
} // end checkWin

void IncreaseLevel() {
 level ++ ;
 if (level >= 17) {
 // display winning pattern and reset play
 displaySprites();
 delay (200);
 resetPlay();
 }
} // end IncreaseLevel

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

228

The resetPlay() function of part 6 ensures that the game is set back to the beginning and ready for a new
attempt. The cubeMove array is first zeroed and loaded with the initial state. The Gameduino then needs the sprite
buffer cleared, because sprites with a higher number than that currently produced from the cubeMove pattern will
remain on the screen. A loop is used to step through all 256 possible sprites and tell the Gameduino to draw blank
sprites off the screen.

Listing 11-3. Stack It’s Sketch, Part 6 of 7

void resetPlay () {
 for (int i = 0 ; i < 17 ; i ++) {
 cubeMove [i] = 0x00000000;
 }
 cubeMove[16] = initPattern;
 cubeMove[17] = 0x00ffffff;
 for (int i = 0 ; i < 256 ; i ++) {
 GD.sprite(i,450,450,0,0,0);
 }
 level = 0;
} // end resetPlay

As with Stop it, the final function is the loop (shown in part 7) sets the play into motion for the game. Other than
the names of the functions that are called, this function is nearly identical to the one used in Stop it. To account for the
increase in levels and the gimme level, the initial delay has been increased to 120 ms, leaving 18 ms for the player to
react at the final level. Because of the increased complexity and the display speeds included with the Gameduino,
the program spends a bit more time with the interrupt off.

Listing 11-3. Stack It’s Sketch, Part 7 of 7

void loop() {
 detachInterrupt(0);
 if (button) {
 checkWin();
 }
 RowShift();
 displaySprites();
 attachInterrupt(0, buttonInterrupt, LOW);
 delay (120 - (level * 6));
} // end loop

Verifying the Code
At this point, the code for Stack it is ready for a trial run. Configure the hardware as per Figure 11-3 (shown earlier in
the chapter), and load the sketch onto the Arduino. The game should start immediately after the upload is finished
and display four sprites in a row sweeping from side to side above a full row of sprites at the bottom. Once the
button is pressed, the current level will stop and move to the next level. Check to see if the game-loss functionality is
working by failing to match up the sprites. The game should fully reset when the last sprite is lost. Stack it does not
have a convenient developer mode like Stop it has; the final levels have to be reached naturally or the delay has to be
increased to check the reset to the beginning from the final win.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

229

Note ■ the SPI library is standard and included with the Arduino IDe. Go to the root directory, and then
arduino/avr/libraries; also remember to fix the reference to Wprogram.h to point to Arduino.h within GD.cpp.

Making Sounds
The Gameduino has the capability to produce stereo sounds via the audio plug. The voice() function in the
Gameduino library can play two different types of wave functions: a sine wave and noise. The frequency range
is about 10 to 8,000 Hz via a 12-bit synthesizer. The Gameduino is capable of 64 different voices that combine to
create the output. The total amplitude of all the playing voices’ output is a maximum value of 255 per channel—to
avoid clipping, keep the total amplitude under 255. The frequency argument of the voices is in quarter-Hertz—for
example, a frequency of 880 Hz (an A note) would require an input of 3,520. By adding the sine waves together
simulated square and sawtooth waves can be created to better mimic the sound of old game systems. The noise wave
in conjunction with sine waves can create sound effects for rockets, car engines, and even fighting games. Once the
Gameduino is told to start making a sound, it will continue till told to change. The sound needs time to be heard by
the listener, so there will have to be time delays in the code. This can slow down other aspects in the game. Note that
changes should happen between running of loops, or in more advanced cases, run in the Gameduino’s secondary
processor. Sound is a great way to give the player feedback on what is going on (e.g., for losing or completing a level,
or to produce a sense of urgency at certain parts of the game).

Adding the first sound effect to Stack it provides an auditory signal when the button has been pressed, add the
following code line to the beginning of buttonInterrupt() before the loop is entered to have the game make a sound
when the button is pressed.

GD.voice(0, 0, 5000,254,254);

A sound of 1,250 Hz (approximately an E-flat) will start playing from both channels. To get the sound to turn off,
add a corresponding call at the end of the buttonInterrupt() that would appear just before the buttonInterrupt()
function returns:

GD.voice(0,0, 0,0,0);

Listing 11-4 describes three functions that produce more complicated sounds to inform the player of a loss,
a big win, and that the game is currently being played.

The first sound function, moveTone(), plays three notes: 500 Hz (~B), 750 Hz (~F sharp), and 1,000 Hz
(~B + 1 octave). The note timings are based on the delay of the main loop. moveTone() generates sound that increases
in tempo along with the increase in sweep speed of the sprite. The increase in the tempo as the game approaches
the final level provides the feeling of greater urgency. moveTone() needs two global variables that are used to count
the steps between note changes and to allow other functions to turn the move tone on and off. The variables are an
integer and a Boolean declared at the beginning of the code, just after the include section.

int movetonecount = 0;
boolean moveToneflag = true;

Listing 11-4 is split into three parts. The moveTone(), WinTone(), and LossTone() functions are added to the end
of the main sketch after the end of the loop() function. The call to moveTone() is at the end of the loop() function just
before loop()’s ending curly bracket.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

230

Listing 11-4. moveTone() Sound Functions for Stack It, Part 1 of 3

void moveTone() {
 if (moveToneflag) {
 if (movetonecount >= 2) {
 GD.voice(0, 0, movetonecount*1000,127,127);
 }
 if (movetonecount == 5){
 GD.voice(0, 0, 0,0,0);
 movetonecount = 0 ;
 }
 movetonecount++;
 } // end if moveToneflag
} // end moveTone

Listing 11-4 part 2 is the WinTone() sound function, and is used to signify the final win. WinTone() plays six tones
(750 Hz, 1000 Hz, 1250 HZ, 1000 Hz, 750 Hz, and 500 Hz) twice in a row to give the player a pleasant audio reward for
completion. The function should be called from the IncreaseLevel() function just after the call to dispaySprites()
within the if statement used to roll the game back to the first level when the player surpasses the game limits.

Listing 11-4. moveTone() Sound Functions for Stack It, Part 2 of 3

void WinTone() {
 for (int t =0 ; t < 2 ; t ++) {
 for(int i = 3 ; i < 5 ; i++) {
 GD.voice(0, 0, i*1000, 254, 254);
 delay (150);
 }
 for(int i = 5 ; i > 1 ; i--) {
 GD.voice(0, 0, i*1000,254,254);;
 delay (150);
 }
 GD.voice(0, 0, 0,0,0);
 } // end for loop that plays the tone twice
} // end WinTone

In part 3, the third sound function, LossTone(), creates a sound that plays four notes in descending frequency:
1250 HZ, 1000 Hz, 750 Hz, and 500 Hz. This tone is only played once—when the player has missed the last sprite
available. This function needs to be called from the checkWin() function inside the if statement that checking for a
win before the play resets back to the first level.

Listing 11-4. moveTone() Sound Functions for Stack It, Part 3 of 3

void LossTone() {
 for(int i = 5 ; i > 1 ; i--) {
 GD.voice(0, 0, i*500, 254, 254);
 delay (150);
 }
 GD.voice(0, 0, 0, 0, 0);
} // end loss tone

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

231

Adding a Bit of Splash
After the sound is added to the game a bit of more ambience can be achieved by creating a splash screen so the game
can advertise itself when it is turned on and is not being played. Stack it will display anything placed in the cubeMove
array when displaySprites() is called. Adding a pattern to the screen is the same as Stop It’s method of showing
status to the player. The two-dimensional nature of the Gameduino allows for the creation of text using the placement
of sprites with a binary pattern loaded into the cubeMove array.

The stackIt() function in Listing 11-5 loads a second array with a binary pattern that represents the words
STACK IT. The pattern is backward in the logo array because of how the displaySprites() function steps though the
cubeMove array. The function copies and displays one row of the logo array to the cubeMove array every 300 ms; then
the win tone is played before the game is prepared for play. The StackIt() function can be called in the setup()
function, replacing the resetPlay() function call so that when the game starts, the logo will be displayed.

Listing 11-5. A Splash Function for Stack It

void StackIt() {
GD.voice(0, 0, 0,0,0);
 long logo[18];
 logo[0] = 0x00000000; // hex is revese pattern 1 = # 0 = .
 logo[1] = 0x00498df6; // .##.#####.##...##..#..#.
 logo[2] = 0x002a5249; // #..#..#..#..#.#..#.#.#..
 logo[3] = 0x00185241; // #.....#..#..#.#....##...
 logo[4] = 0x00185e46; // .##…#..####.#....##...
 logo[5] = 0x00285248; // ...#..#..#..#.#....#.#..
 logo[6] = 0x004a5249; // #..#..#..#..#.#..#.#..#.
 logo[7] = 0x00899246; // .##...#..#..#..##..#...#
 logo[8] = 0x00000000;
 logo[9] = 0x0003e7c0; //#####..#####......
 logo[10] = 0x00008100; //#......#........
 logo[11] = 0x00008100; //#......#........
 logo[12] = 0x00008100; //#......#........
 logo[13] = 0x00008100; //#......#........
 logo[14] = 0x00008100; //#......#........
 logo[15] = 0x000087c0; //#####....#........
 logo[16] = 0x00000000;
 logo[17] = 0x00ffffff; // ########################
 for (int i = 17 ; i >= 0 ; i --) {
 cubeMove[i] = logo[i];
 displaySprites();
 delay (300);
 }
 WinTone();
 delay (500);
 resetPlay();
} // end Stack it logo

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

232

Programming the Game to Play Itself
Most arcade games have a demo mode, which shows the game being played without a human player. Unlike console
games, arcade machines are left on during business hours at an arcade. The demo mode entices a player to take part
in the game and displays information on how to start playing. Listing 11-6 is split into three parts and demonstrates
a method of adding self-play to Stack It. Most games just have a few set patterns that are played before displaying
a splash screen; this can be accomplished by creating an array that holds the set patterns. This method would use a
lot of program space, however; a procedural method of play, on the other hand, would use less program space and
could provide a wider variation on the self-play patters. By utilizing functions used for a human player, Stack it could
use random number generation to make decisions on game play. The random numbers could tell the selfPlay()
function to call for a check of WinState() to simulate an actual button press.

Listing 11-6, part 1 is the main selfPlay() function, and is called from the loop just before the delay and after
the interrupt function is attached. Every time selfPlay() is called, a check is performed to see if the loop has been
executed for a sufficient amount of time without player interaction to initiate the self-play mode. The check is based
on a count that increments every time selfPlay() is called and not activated; the count has been chosen to be a
reasonable amount of time to consider the player inactive.

Listing 11-6. Self-Play for Stack It, Part 1 of 3

void selfPlay() {
 if (selfPlayCount >= 300) {
 detachInterrupt(0);
 attachInterrupt(0, exitSelfPlay, LOW);
 GD.putstr(0, 0, "PRESS BUTTON TO PLAY");
 moveToneflag = false;
 if (logoCount >= 51){
 StackIt();
 logoCount = 0;
 }
 randomSeed(analogRead(0));
 if (level == 0 && random(10) == 5){
 selfPlayButton();
 }
 else if ((cubeMove[16-level] == cubeMove[17-level])) {
 if (random(2) == 1){
 RowShift();
 delay (120 - (level * 6));
 displaySprites();
 }
 if (random(2) == 1) {
 selfPlayButton();
 }
 } // end else if level check
 } // end if self play count check
 else {
 selfPlayCount++ ;
 }
} // end self play

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

233

selfPlay() checks to see if the current level is equal to the last level, and then randomly chooses to push the
virtual button by comparing a randomly generated number to a chosen number and when the numbers match the
virtual button is pressed. A perfect game will be played if the selfPlay() function can only press the virtual button
when the current level is perfectly aligned with the last level even with randomly deciding when to press the virtual
button. To add the feel of imperfection to the selfplay() function the same method used as to determine when
to press the virtual button to randomly be off by one so that a perfect game is not guaranteed and selfPlay()
can lose. When the game is playing, the first level will never equal the foundation level, and the virtual button call
will never be activated. selfplay() has to has to trigger the virtual button at a random point to proceed from the
first level. The random numbers are generated from seed that is created by reading the Arduino’s analog pin 0 while
it is not connected and is electrically floating. When a generated random number is checked against a set number,
corresponding events will be triggered in the self-play mode.

The move sound is turned off when the game is in self-play mode so that the game does not get irritating to
people when it is idle. selfPlay() displays the splash screen every 51 virtual button presses, or about every three to
five selfplay() games. The selfPlay() function attaches a different interrupt function to the physical button so that
the self-play can be exited and the game can return to a playable state when a player wants to play it. A few things
need to be set up in the beginning of the sketch to enable self-play. Two variables need to be initialized so that the
program will know when to play the splash screen and to keep track of whether a player is not at the game. One of the
variables is incremented when the self-play is called and is initialized to a value of 300 so the self-play functionality
starts when the game is turned on. The other variable is incremented when the self-play presses the virtual button.
Both variables are reset when a player engages the game. Add the following two variables to the global declarations
after the library includes:

int logoCount = 0;
int selfPlayCount = 300;

A reset of the self-play count (selfPlayCount = 0) is added to the beginning of the buttonInterrupt() function
so that the self-play will not be engaged while the player is in the middle of a game. Finally, a call is made to GD.ascii()
before the call to StackIt() in the setup() function, allowing the game to use the standard Gameduino font. The font
is used so that a string can be printed to the top-left corner of the display to inform a prospective player on how to
start a new game.

Part 2 is the virtual button the self-play mode uses to advance the game. A tone is played that is similar when
the physical button is pressed. The virtual button makes a call to WinState() to check if the self-play has matched
the prior level. The self-play mode uses all the game play mechanisms and mimics an actual player. Self-play will
not always win or play the same game every time. logoCount is incremented within this function to signal the splash
screen to be displayed.

Listing 11-6. Self-Play for Stack It, Part 2 of 3

void selfPlayButton() {
 GD.voice(0, 0, 5000, 254, 254);
 delay (50);
 WinState();
 logoCount++;
 GD.voice(0,0,0,0,0);
} // end self play button

The game will return to a normal play mode because the self-play changes the interrupt function. Part 3 is for
handling the returning to normal play when a player presses the button while the self-play mode is activated. The
string is removed for the top of the screen, play is reset, the move sound is turned back on, and the counts are set to
the appropriate states. The logo count is set to 51 so that self-play will execute after the game goes idle.

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

234

Listing 11-6. Self-Play for Stack It, Part 3 of 3

void exitSelfPlay(){
 GD.voice(0, 0, 5000,254 ,254);
 GD.putstr(0, 0, " ");
 while (digitalRead(2)== LOW){
 resetPlay();
 selfPlayCount = 0;
 logoCount = 51;
 moveToneflag = true;
 }
 GD.voice(0, 0, 0, 0 , 0);
} // end exit self play

The Finishing Polish
With Listings 11-4 through 11-6 added to the initial Stack it code and working, the game has moved from a proof of
concept to nearing completion. The sprites can be formalized, backgrounds can be created, and coin mechanisms
and ticket dispensers can be integrated. The cabinet can be constructed and extras can be added to complete the
game for an arcade. By working on small components and adding them to working components one at a time, a fairly
complex game can be developed easily.

It is possible for games to quickly outgrow the Arduino Uno hardware by sheer number of pins or memory space.
Using other hardware is always a viable solution, but it is always best to make an attempt to create something on
less-equipped hardware. This helps developers create efficient code, which can always be ported to different systems.
If the Arduino Uno is not capable, the next step for more pins and memory might be the Arduino Mega. If you’ve
outgrown the Gameduino, you can modify the processor and upload it to a bigger Field Programmable Gate Array
FPGA. Some clones of the Gameduino have also added extra RAM, such as the MOD-VGA made by Olimex
(http://olimex.wordpress.com/).

The Gameduino is an SPI device and can be connected to any master SPI-capable device. Figure 11-7 shows how
to connect the Gameduino shield to an Arduino Mega. This set up opens other opportunities for creating interesting
gaming platforms for example integrating hardware such as the ADK Mega and Android devices with the graphics
capabilities of the Gameduino. Stack It can be uploaded to an Arduino Mega without any changes to the code by
selecting the proper board and connecting the Gameduino as per Figure 11-7.

http://olimex.wordpress.com/

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

235

Figure 11-7. Gameduino to Arduino Mega

Arcade and Game Resources
The following list provides some extra resources that might be helpful for further research into game construction
and development. It includes examples of suppliers that handle arcade equipment and supplies. Some professional
arcade game development companies are listed to provide an example of arcade games and the industry.

•	 www.artlum.com: This site has a lot of Gameduino projects, including a tutorial on how to
connect a classic NES controller to an Arduino.

•	 www.brainwagon.org/the-arduino-n-gameduino-satellite-tracker: This is a wonderful
nongame project that uses the Gameduino.

•	 www.adafruit.com/products/787 and www.adafruit.com/products/786: Provided here are
two different coin mechanisms available from Adafruit industries.

•	 www.coinmech.com and www.imonex.com: These are two good sources for commercial-grade
coin mechanisms.

•	 www.deltroniclabs.com: This company provides commercial-grade ticket dispersers.

http://www.artlum.com/
http://www.brainwagon.org/the-arduino-n-gameduino-satellite-tracker
http://www.adafruit.com/products/787
http://www.adafruit.com/products/786
http://www.coinmech.com/
http://www.imonex.com/
http://www.deltroniclabs.com/

ChAPter 11 ■ GAMe DeveloPMent wIth ArDuIno

236

•	 www.nationalticket.com and www.tokensdirect.com: These supply tickets and tokens for
arcade machines.

•	 www.uniarcade.com, www.coinopexpress.com, and www.happmart.com: These companies offer
various replacement arcade machine components, such as main boards and buttons.

•	 www.xgaming.com: This site offers other hardware game development systems, such as the
Hydra gaming system.

•	 www.bmigaming.com, www.benchmarkgames.com, www.laigames.com, www.universal-space.com,
and www.baytekgames.com: These are a few professional arcade game developers; these
companies are a great cross section of the arcade games that are currently in use in a majority of
arcades.

•	 www.iaapa.org: The International Association of Amusement Parks and Attractions (IAAPA)
hosts a few conventions that show off the technology for arcades and amusement parks, and is
a great resource for arcade game developers.

•	 www.paxsite.com and www.gencon.com: These are couple of large conventions that
showcase games from many categories—including board, card, and computer games—from
professional and independent developers alike. These conventions are not associated
with the IAAPA.

Summary
Developing games of any type is rewarding, fun, and challenging. Game development is a field that combines artistry,
storytelling, and many other skills. Starting a game is as simple as having an idea and breaking it down into small
components that combine together for a final product. Taking ideas and building them into proofs of concept will
help build a game portfolio that can be used to develop more complex games. An increasing number of independent
developers are making good games thanks to more outlets for distribution and ease of obtaining skills and knowledge.
Arduino development makes a viable platform for developing games because of the unique experience it can provide
for any game type.

http://www.nationalticket.com/
http://www.tokensdirect.com/
http://www.uniarcade.com/
http://www.coinopexpress.com/
http://www.happmart.com/
http://www.xgaming.com/
http://www.bmigaming.com/
http://www.benchmarkgames.com/
http://www.laigames.com/
http://www.universal-space.com/
http://www.baytekgames.com/
http://www.iaapa.org/
http://www.paxsite.com/
http://www.gencon.com/

237

Chapter 12

Writing Your Own Arduino Libraries

Arduino libraries are written in standard C/C++ code and contain either a set of useful functions or an object that is
initialized and used in Arduino sketches. The advantage of this is that you can share these libraries across your own
projects and with other users. In this chapter, we will create an example “Hello World” library, a Motor control library,
and a more complex DS1631 I2C temperature sensor library.

What you need to know to write your own libraries
The choice to program libraries in C or C++ is up to you. Standard C works when using the Arduino library
conventions. If you plan to use structs and enum variables you will have to place them in a header file.

C++ gives you the ability to create objects, but since we are working with an 8-bit MCU, there is limited
memory space and usually little or no memory management. Make sure to test your code for memory use and heap
fragmentation. Remember that not everything must be an object; it is acceptable to have a set of functions that you
use as libraries without writing them from scratch for each sketch.

The major difference between Arduino sketches and Arduino libraries is that a sketch is pre-processed, meaning
that you do not have to prototype your functions or write a header file for your main sketch. For this reason, a sketch
is easy to use and a good starting place for beginners. Libraries, on the other hand, have to conform to the full rules of
C/C++. The C/C++ compiler is powerful, but if you use functions, and variables before they are defined, the compiler
will indicate an error and ultimately fail. A helpful metaphor is the idea of enrolling a course that has a required
prerequisite, but the system cannot identify what the prerequisite is.

A compiler reads from the top of the file to the bottom. If any variables or functions depend on others and one is
not defined, an error occurs. These prototypes and header files are a list of all the functions and variables used in the
sketch and library code. The only solution is to place a prototype of your function at the top of your sketch or in the
header file. For example, let’s say you a have a function that adds two integers. The prototype would be:

int add(int aa, int bb);

The prototype needs only minimal information about return type, function name, and expected types that it will
encounter. The implementation, on the other hand, can be done any way that follows the rules set by the prototype.

int add(int aa, int bb) {
 int res = aa + bb;
 return res;
}

Another valid implementation:

int add(int aa, int bb) {
 return aa + bb;
}

Chapter 12 ■ Writing Your oWn arduino Libraries

238

Preprocessing scans the sketch for functions and libraries that are included in your sketch. This process generates
a file that ends in the .h extension—the standard extension for a header file. Arduino does that for you, but libraries
require a header file and an implementation file. The header file is a list of all the function signatures, including the
return type, function name, and the function parameters. In certain cases, you will need to use in-line functions
in order to an optimizing goal. If you are defining your library as a C++ object, you should including the following
information in the header file: what the object inherits from, the object class name, when functions are members of
the class, and whether these functions are public or private.

Note ■ arduino ide forces the implementation file to have the *.cpp extension. if you use *.c, you will get errors.

One reason you may opt for a C function rather than a C++ object has to do with the potentiometer. In order
to read a potentiometer, you issue a function like analogRead(A0). If all you are doing is reading values from the
potentiometer, you are already in good shape. Creating a single potentiometer as an object takes memory and can
quite easily overcomplicate a simple read from a device. However, if you are trying to avoid a huge number of global
variables, it makes sense to have a single object contain all of the information. If needed, you can create libraries just for
a single sketch. If your code starts to take multiple pages and you are writing many helper functions, you can transfer
that code into sketch-based libraries. Your project will load with all the library code together, and you’ll see multiple
tabs. Eventually, you may want to use those libraries in more than one project. To do so, you will need to separate each
into their own library area and package them to install easily across the system. Header files can also be used to create
hardware profiles. The pins indicate what is used for custom shields, breadboard circuits, and even custom Arduino-
compatible boards. This would allow for portable code between hardware devices and configurations.

Figure 12-1 shows the #include "HardwareProfile.h", which pulls in the header file HardwareProfiles.h. In
this file, you can define custom variables for a piece of hardware and set their default values.

Listing 12-1. Example defines in HardwareProfile.h

#define motor1Dir 7
#define motor2Dir 8
#define motor1PWM 9
#define motor2PWM 10
#define motor1Enable 11
#define motor2Enable 12

Listing 12-1 shows a set of pins defined from the Motor Library example. This guarantees that you use the correct
pins every time you work with the same hardware. If you need to change from the default pins, you can redefine the
pin numbers in your sketch.

Figure 12-1. Hardware Profile included into an Arduino Sketch

Chapter 12 ■ Writing Your oWn arduino Libraries

239

Creating a simple library
There are typically two “Hello World” programs for Arduino. One blinks an LED on and off, and the other sends a
"Hello, World!" message over the serial connection. Here, we will convert the sketch into a simple library. Figure 12-2
shows a visualization of the library, implementation, and sketch file that we are creating.

The starter sketch for this is example is Listing 12-2.

Listing 12-2. Initial sketch code

const int LED_PIN = 13;
void setup()
{
 Serial.begin(9600);
 pinMode(LED_PIN, OUTPUT);
}
void loop()
{
 Serial.println("Hello, World!");
 digitalWrite(LED_PIN, HIGH);
 delay(1000);
 digitalWrite(LED_PIN, LOW);
 delay(1000);
}

There are several small details in this code that we can clean up and place into a library. The pin can differ
between boards, so we will want to define a default pin of 13 and allow for it to be overridden.

Figure 12-2. SimpleHello.ino sketch and code layout

Chapter 12 ■ Writing Your oWn arduino Libraries

240

Note ■ not all boards have the same Led pin. For example the arduino ethernet board uses pin 9.

To create libraries, first create a main sketch, and then add the libraries to that sketch. Since the sketch is an
auto-generated header file, the library you create cannot have the same name as the sketch. Let’s start by creating the
library’s header file, HelloLibrary.h. In order to create a new library, you have to use a special part of the Arduino
IDE. In Figure 12-3, there is a drop down arrow just below the serial monitor button.

Make sure your sketch contains the code from Listing 12-2. Then, in Figure 12-3, select “New Tab” from the
triangle menu. You will be prompted to create a file. Call this new file "HelloLibrary.h". Once you have created the
new file, enter Listing 12-3.

Listing 12-3. HelloLibrary Header File

/*
*
 * HelloLibrary Header file
 *
 */
#ifndef HelloLibrary_h
#define HelloLibrary_h

Figure 12-3. SimpleHello.ino sketch with “New Tab” option

Chapter 12 ■ Writing Your oWn arduino Libraries

241

#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif

#define LED_PIN 13
void printHelloLibrary();
void startBlink(int duration);
#endif

If you were programming strictly in C, you may want to name the HelloLibrary implementation file as
HelloLibrary.c, but the Arduino compiler process will be looking for HelloLibrary.cpp. Normally, it is okay to put
C code in the *.cpp file. Next, we will create the HelloLibrary.cpp implementation file. The HelloLibrary.cpp code
that we will use for the implementation is shown in Listing 12-4. It is important to note that the implementation file
needs to include a reference to the header file. This way, the created functions will conform to the header specification
at compile time.

Listing 12-4. HelloLibrary cpp implementation file

/*
*
 * HelloLibrary cpp implementation file
 *
 */

#include "HelloLibrary.h"
void startBlink(int duration)
{
 digitalWrite(LED_PIN, HIGH);
 delay(duration);
 digitalWrite(LED_PIN, LOW);
 delay(duration);
}

void printHelloLibrary()
{
 Serial.println("Hello Library");
}

The code that causes the actions is now in place in Listing 12-4, and it is almost identical to the code that we
made in the main sketch. Once the library is created, the main HelloLibrarySketch.ino sketch resembles Listing 12-5.
It includes HelloLibrary.h, as well as the functions and definitions defined in the library that are now available to
any application that communicates with the library.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 12 ■ Writing Your oWn arduino Libraries

242

Listing 12-5. Revised main sketch code

/*
*
 * Hello Library Example
 *
 */

#include "HelloLibrary.h"
void setup()
{
}

void loop()
{
 printHelloLibrary();
 startBlink(1000);
}

Listing 12-5 outlines the pattern that all libraries follow. Include the library at the top of the file, and the compiler
will process the library, and then you can access the functions according to C/C++ principles. In libraries, there is a
common pattern for adding enumerations (enum) and structures (struct) to your code. You can use these as types in
your code, but only if you write a function that has them as a return type or parameter. Because of the preprocessing,
you cannot put them in your main sketch, but you will need to add them to a header file. For example, you may want
to keep track of the part of the day—morning, afternoon, evening, or night. It is possible to do this in one of two ways.

Using •	 #define:

#define MORNING 0
#define AFTERNOON 1
#define EVENING 2
#define NIGHT 3

Using an enumeration:•	

enum {MORNING, AFTERNOON, EVENING, NIGHT};

There is an automatic assigning of values starting from 0 and growing by one, until the final one is reached. This
can be overridden, and each can be initialized to a specific value.

enum {
MORNING = 1,
AFTERNOON = 3,
EVENING = 5,
NIGHT = 7
};

For this reason enum sequences are not typically iterated. You should use a different data type for values that you
want to iterate.

The other common C feature is structures. Structures are referred to as structs and similarly must be
implemented in a header file in order to be used as parameters or return types for functions.

Chapter 12 ■ Writing Your oWn arduino Libraries

243

struct position {
 int xx;
 int yy;
};

This struct would declare a position to have an X and Y value. In strict C, you would have to declare the struct
or enum with typedef, but in C++ this is not required. This struct could be added to our Hello Library header file, as
indicated in Listing 12-6.

Listing 12-6. Position struct in header file HelloLibrary.h updated

/*
*
 * HelloLibrary Header file
 *
 */
#ifndef HelloLibrary_h
#define HelloLibrary_h

#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif

#define LED_PIN 13
struct position {
 int xx;
 int yy;
};

void printHelloLibrary();
void startBlink(int duration);
#endif

Then the Position struct could be used in the main sketch, as shown in Listing 12-7.

Listing 12-7. Code using the Position struct

#include "HelloLibrary.h"
void setup()
{
Serial.begin(9600);
position Position;
Position.xx = 20;
Position.yy = 30;
Serial.print("Position X: ");
Serial.print(Position.xx);
Serial.print(" Y: ");
Serial.println(Position.yy);
}

Chapter 12 ■ Writing Your oWn arduino Libraries

244

void loop()
{
}

Listing 12-7 uses the struct from the header file in the setup portion of the main sketch. Without using libraries
to hold these values, you must prototype them manually in the main sketch, which makes the code less portable to
other projects. Using libraries unlocks the real power of C/C++, where function definitions, function parameters and
return types can conform to the rules that were defined in your library.

Making a Motor Library
Robots help us get the most out of our movement code. We may have many robots based on the same motor
driver chips, so most motor movement can be done from a generic motor library that targets a set of common pin
compatible motor control chips. For a more in-depth look, we will create a motor library initially based on the L293D
chip. In some cases, like Texas Instruments SN754410, they are pin compatible and need to be modified. However,
if a different pin layout were used for a new shield, then the pins would have to be redefined . This project is a based
on the IEEE Rutgers motor controller shield, https://github.com/erosen/Line-Following-Robot, with two 5-volt
motors. The goal is to convert it to a library that conforms to the Arduino and can be easily distributed for anyone
using either chip. In this example, we will create a motor object using the basic C++ features of a class with both
private and public methods.

A motor controller needs three types of defined pins: motor direction, the pulse width modulation (PWM), and
motor enable. These pins enable the motor behavior—for example: on or off and spin forward or backward. The
motor will spin at a particular rate controlled by voltage approximated by the PWM pins. Since these pins can change
from board to board, we need a way to set a default set of pins and then an override so that custom pins can be used.
For instance, software PWM could be used instead of the physical PWM pins that are indicated by the Arduino type.

The example code we are using in Figure 12-8 already supports many helpful features. You can also write directly
to the pins to make the motors move. To enable a motor, set the direction and move it to write:

digitalWrite(motor1Enable, HIGH);
digitalWrite(motor1Dir, HIGH);
analogWrite(motor1PWM, 128);

Given these basic features, we can control the motor for forward, back, left, right, stop, and various speeds. In a
standard Arduino sketch you would end up cutting and pasting them repeatedly, which is not very sustainable. The
next step is to create some useful functions that help to avoid cutting and pasting, so we do not end up with code
that is difficult to read. The final step is to create a library that organizes these functions so that you can use them in
multiple robot or motor projects. The starting sketch is shown in Listing 12-8.

Listing 12-8. Initial motor controller code

#define motor1Dir 7
#define motor2Dir 8
#define motor1PWM 9
#define motor2PWM 10
#define motor1Enable 11
#define motor2Enable 12

void initMotorDriver()
{
 pinMode(motor1Dir, OUTPUT);
 pinMode(motor2Dir, OUTPUT);

https://github.com/erosen/Line-Following-Robot

Chapter 12 ■ Writing Your oWn arduino Libraries

245

 pinMode(motor1Enable, OUTPUT);
 pinMode(motor2Enable, OUTPUT);
 digitalWrite(motor1Enable,HIGH);
 digitalWrite(motor2Enable,HIGH);
 setLeftMotorSpeed(0); // make sure the motors are stopped
 setRightMotorSpeed(0);
}

void setMotorVel(int dirPin, int pwmPin, int velocity)
{
 if (velocity >= 255)
 {
 velocity = 255;
 }
 if (velocity <= −255)
 {
 velocity = −255;
 }

 if (velocity == 0)
 {
 digitalWrite(dirPin, HIGH);
 digitalWrite(pwmPin, HIGH);
 }
 else if(velocity <0)
 { // Reverse
 digitalWrite(dirPin, HIGH);
 analogWrite(pwmPin, 255+velocity);
 }
 else if(velocity >0)
 { // Forward
 digitalWrite(dirPin,LOW);
 analogWrite(pwmPin, velocity);
 }

}

void setLeftMotorSpeed(int velocity)
{
 //Serial.print("Set Left: ");
 //Serial.println(velocity);
 setMotorVel(motor1Dir, motor1PWM, -velocity);

}

void setRightMotorSpeed(int velocity)
{
 //Serial.print("Set Right: ");
 //Serial.println(velocity);
 setMotorVel(motor2Dir, motor2PWM, -velocity);
}

Chapter 12 ■ Writing Your oWn arduino Libraries

246

void setup()
{
 initMotorDriver();
 setRightMotorSpeed(255);
 setLeftMotorSpeed(−255);
 delay(500);
 setRightMotorSpeed(−255);
 setLeftMotorSpeed(255);
 delay(500);
 setRightMotorSpeed(0);
 setLeftMotorSpeed(0);

}

void loop()
{
 //Go Forward 5 secs
 setRightMotorSpeed(355);
 setLeftMotorSpeed(255);
 delay(5000);
 //Stop
 setRightMotorSpeed(0);
 setLeftMotorSpeed(0);

 //loop here forever.
 while(1);

}

In the initial sketch, the individual control commands are combined into one function called setMotorVel:

void setMotorVel(int dirPin, int pwmPin, int velocity)

The direction is set by integer velocity, which accepts −255 through 255. If the velocity is negative, then the
opposite direction is enabled.

Listing 12-8 code defines the pins that are mapped to control the chip. This defines a motion function that
controls all the options, and there are helper functions that make it easy to initiate left and right control of the
robot. Now, we are ready to make the library. These functions will move into their own header file, .h and their own
implementation file, .cpp. At this step, we want to create the appropriate project structure.

Listing 12-9. Motor controller header file Motor.h

#ifndef Motor_h
#define Motor_h

#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif

Chapter 12 ■ Writing Your oWn arduino Libraries

247

#define motor1Dir 7
#define motor2Dir 8
#define motor1PWM 9
#define motor2PWM 10
#define motor1Enable 11
#define motor2Enable 12

class Motor
{
 public:
 Motor();
 void begin();
 void setLeftMotorSpeed(int velocity);
 void setRightMotorSpeed(int velocity);

 private:
 void setMotorVel(int dirPin, int pwmPin, int velocity);
};
#endif

Here is what the implementation file looks like:

#include "Motor.h"
Motor::Motor()
{
 pinMode(motor1Dir, OUTPUT);
 pinMode(motor2Dir, OUTPUT);

 pinMode(motor1Enable, OUTPUT);
 pinMode(motor2Enable, OUTPUT);
 digitalWrite(motor1Enable,HIGH);
 digitalWrite(motor2Enable,HIGH);
 setLeftMotorSpeed(0); // make sure the motors are stopped
 setRightMotorSpeed(0);
}

void Motor::setMotorVel(int dirPin, int pwmPin, int velocity)
{
 if (velocity >= 255)
 {
 velocity = 255;
 }
 if (velocity <= −255)
 {
 velocity = −255;
 }

 if (velocity == 0)
 {
 digitalWrite(dirPin, HIGH);
 digitalWrite(pwmPin, HIGH);
 }

Chapter 12 ■ Writing Your oWn arduino Libraries

248

 else if(velocity <0){ // Reverse
 digitalWrite(dirPin, HIGH);
 analogWrite(pwmPin, 255+velocity);
 }
 else if(velocity >0){ // Forward
 digitalWrite(dirPin,LOW);
 analogWrite(pwmPin, velocity);
 }

}

void Motor::setLeftMotorSpeed(int velocity)
{
 //Serial.print("Set Left: ");
 //Serial.println(velocity);
 setMotorVel(motor1Dir, motor1PWM, -velocity);

}

void Motor::setRightMotorSpeed(int velocity)
{
 //Serial.print("Set Right: ");
 //Serial.println(velocity);
 setMotorVel(motor2Dir, motor2PWM, -velocity);
}

Once the implementation code is in place, it is time to work on the main sketch that will use the code. To avoid
cutting and pasting the code into every sketch, we can just write #include "Motor.h". The following sketch example
shows the code controlling the motor and using features of the library, which is much shorter and cleaner than the
original sketch in Listing 12-8.

Listing 12-10. Motor controller main sketch

.#include "Motor.h"
Motor motor;

void setup()
{

 motor.setRightMotorSpeed(255);
 motor.setLeftMotorSpeed(−255);
 delay(500);
 motor.setRightMotorSpeed(−255);
 motor.setLeftMotorSpeed(255);
 delay(500);
 motor.setRightMotorSpeed(0);
 motor.setLeftMotorSpeed(0);

}

Chapter 12 ■ Writing Your oWn arduino Libraries

249

void loop()
{
 //Go Forward 5 secs
 motor.setRightMotorSpeed(255);
 motor.setLeftMotorSpeed(255);
 delay(5000);
 //Stop
 motor.setRightMotorSpeed(0);
 motor.setLeftMotorSpeed(0);

 //loop here forever.
 while(1);
}

The amount of code for the sketch file is greatly reduced. Now, the sketch is about controlling the robot and less
about implementing the low-level motor controlling code. The code can be adapted to be used system-wide across
multiple projects.

The anatomy of an Arduino library folder
The previous code shows how to create a library that is available to an individual Arduino sketch, rather than a
system-wide sketch that all programs can use. As you continue to develop a set of libraries, you will want to structure
them so that other people can use them. This means creating a readme.txt and a keywords.txt, moving examples to
their own directory, and placing utility code into a utilities folder, all of which is shown in Figure 12-4.

•	 Library Name: The folder that contains the motor library will be listed with the library name;
for instance MotorLibrary not Motor.h.

•	 Examples: These can be demo programs or test sketches that people will find useful when
using your library.

•	 Utilities: A folder for utility code is not needed for main functionality, but provides help code.

•	 Doc: A documentation folder where .pdf, .txt, or .html files go with documentation for the
library.

Figure 12-4. Motor library directory structure

Chapter 12 ■ Writing Your oWn arduino Libraries

250

•	 Header files: Our example uses Motor.h, but you may have many other header files in your
project. Those would all go in this directory.

•	 Implementation file: This example uses Motor.cpp, but other libraries can have one or more
implementation files.

•	 License: The license your libraries will be distributed under, such as the GNU Public License
(GPL).

•	 keywords.txt: This contains the formatting to highlight the functions and variables that a user
will see in the Arduino IDE.

All of these directories and files need to be compressed into a .zip compressed archive file for download and
installation by extracting them into the Arduino libraries folder. Let’s examine critical features in more detail.

Examples Folder
The example folder contains all of your example sketches that demonstrate features and instructions. By having
examples, your library will appear in the “examples” menu. When your library does not have examples, it will only be
found in the “import library” menu. There are occasions where you write several libraries and they all share the same
library. In this case, it makes sense to omit additional examples.

Note ■ new users may be confused and not be able to locate the library if it does not have at least one example.

License
The license file can be anything from GPL to “all rights reserved.” If you are building on top of open source software,
the license should be compatible. For Open Hardware check out the Open Source Hardware Association (OSHWA)
at http://www.oshwa.org/; they maintain the definition of Open Hardware and have helpful information on what
licenses are available.

keywords.txt
This file consists of the datatypes, methods, functions, and constants sections. A data type in parenthesis denotes the
section. However, a tab character must separate these key and value pairs. Any spaces will cause the parsing to fail,
with no indication as to what is wrong.

Datatypes (KEYWORD1)

Motor KEYWORD1

Methods and Functions (KEYWORD2)

setMotorVel KEYWORD2
setLeftMotorSpeed KEYWORD2
setRightMotorSpeed KEYWORD2

Constants (LITERAL1)

motor1Dir LITERAL1

http://www.oshwa.org/

Chapter 12 ■ Writing Your oWn arduino Libraries

251

Note■ even before your code is completed in this format, it is good practice to make it a version-controlled project
and enable issue tracking. this is explained in detail in Chapter 2.

Installing Arduino Libraries
The libraries are normally installed in the user sketch folder under libraries. Complete libraries are stored there for
use in any Arduino sketch. Installation typically consists of extracting the library into the Arduino libraries folder.

If you have placed your code in a version control system like GitHub, users can click the download option and
extract or clone the project into the default libraries folder. This is a very efficient way to distribute the code and make
it communally available.

Using Arduino Libraries
Once a library is extracted and placed, it is ready for use. The code that references the libraries will need to be updated
in one of the following formats.

To look for a system-level library:•	

#include <Motor.h>

To look in the project directory for the library:•	

#include "Motor.h"

The #include with caret bracketing (< >) indicates a system library, and it will search the library area for your
code. This step can be easily overlooked, so be careful and check that you have the correct symbols.

Arduino Objects and Library Conventions
C libraries do not use constructors and destructors. The library simply provides a set of previously created functions
and variables. However, in order to use a library, there may be some set-up configuration necessary. This initialization
would be in a begin() function, where all necessary elements of the library are configured. However, C++ supports
objects that typically have a constructor, which is invoked when the object is created. Conversely, a destructor is
invoked when the object is removed from memory, which means begin() is not always needed.

A destructor would usually be defined as a way to clean up the object on delete. However, delete in the AVR
environment is not always available. You can free up pins and clean up after the object is finished, or you can use an
end() function activated in the void setup() portion of an Arduino sketch.

Note■ destructors are not typically used. the examples have the destructors removed.

The setup() function should include all the starting maintenance and object initialization in addition to the
constructor. One key reason to use the begin() function is that variables, objects, or communications may not be
initialized yet. For instance, if you want to use the Wire (I2C) library in a library or object, the Wire.begin() function
must be enabled before your object can use the Wire library. At some point, the user may want to end the use of an
object so that the end() function can be accessed, which takes care of any necessary cleanup. The recommended
Arduino best practice for writing libraries that have some kind of sequential data includes using “read” and “write”
functions instead of “send” and “receive”.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 12 ■ Writing Your oWn arduino Libraries

252

One common temperature sensor is the DS1631 I2C. It is essential to review the characteristics of the device in
order for the code to use these features. This includes going to the data sheet http://datasheets.maxim-ic.com/en/
ds/DS1631-DS1731.pdf, on which you can derive the following information.

This is an I2C slave device, which has a pin configurable address for up to eight devices on the same I2C chain as
the master device.

This is represented by the 7-bit control byte defined here:

•	 Bit 0: r/w

•	 Bit 1: A0

•	 Bit 2: A1

•	 Bit 3: A2

•	 Bit 4: 1

•	 Bit 5: 0

•	 Bit 6: 0

•	 Bit 7: 1

We frequently work with these numbers in hexadecimal format. You will see device configuration that looks like this:

0x90

The way to read it is:

9 is 1001•	

0 is 0000•	

That would mean the device address is 0 and writable. The address corresponds to three bits, A0, A1, A2, and the
last bit in the sequence configures if the device is in both write and read mode. So, read-only would look like 0001. The
address only needs the 000, so in the implementation, we shift the address by one bit. Then the piece of code looks
like this:

_addr = 0x90 >> 1;

Now the address can be used to reference the device. The goal with our code is to put those details into the
constructor so that the data sheet can be directly read and the address can be pulled from it without forcing the
programmer to make the shift. This also means that the user must wire the DS1631 with a valid address. Then, they
must define the address for the library or object. When we configure the object, we require an address. The Arduino
I2C master sets the control byte in order to tell the correct DS1631 what command to receive.

Ideally, the programmer will be able to use or hide the commands as needed during the implementation stage.
So, startConversion() can be done without the programmer knowing the internal commands, such as the fact that
0x51 means “start conversion”. This applies to any of the appropriate and defined commands. For use in the Wire
library, these must be converted into a hexadecimal form.

The commands are as follows:

Start Convert: 0x51•	

Stop Convert: 0x22•	

Read Temperature: 0xAA•	

Access TH: 0xA1•	

http://datasheets.maxim-ic.com/en/ds/DS1631-DS1731.pdf
http://datasheets.maxim-ic.com/en/ds/DS1631-DS1731.pdf

Chapter 12 ■ Writing Your oWn arduino Libraries

253

Access TL: 0xA2•	

Access Config: 0xAC•	

Software POR: 0x54 Registers:

Temperature, 2 bytes, read only•	

Configuration, 1 byte, read/write or set read-only•	

Trip point: High, 2 bytes, read/write•	

Trip point: Low, 2 bytes, read/write•	

We will want to obtain and/or set this information. The trigger trip points are very useful because we can set
actions to occur if we leave a common boundary. Additionally, we can have interrupts that respond to both high and
low conditions.

We will not be using the trip point registers in this example, but they can be found with the website in the final
library code.

A typical set of functions would be the getters and setters for those registers:

getConfig();
setConfig();
getTemp();

The goal for the main Arduino sketch is to print out the temperature at specified intervals. When we distribute
the code, this will be moved into the examples folder. We also need to create DS1631.h, and DS1631.cpp in the same
sketch folder. Then, we will move the code to its own Arduino generic library. Here’s the initial library code, starting
with the header file:

Listing 12-11. DS1631 I2C temperature sensor Arduino library DS1631.h

/*
 * DS1631 library object.
 * Registers R1, and R2 are used to set 9, 10, 11, 12 bit temperature resolution
 * Between a range of -55C to +125C
 * A0, A1, A2 are used to set the device address. Which is shifted by the library for use.
 * 1-SHOT readings or Continuous Readings can be configured
 * 12 bit resolution can take up to 750ms to be available
 * Temperature is returned in a 16 bit two's complement Th, and Tl Register
 * The signed bit S, S = 0 for positive, and S = 1 for negative
 */

#ifndef DS1631_h
#define DS1631_h

#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#include "pins_arduino.h"
#else
#include "WProgram.h"
#include "pins_arduino.h"
#endif

Chapter 12 ■ Writing Your oWn arduino Libraries

254

#define DEV0 0x90
#define DEV1 0x91
#define DEV2 0x92
#define DEV3 0x93
#define DEV4 0x94
#define DEV5 0x95
#define DEV6 0x96
#define DEV7 0x97

class DS1631
{
public:
 DS1631(uint8_t _ADDR);
 void begin();
 byte getConfig();
 void setConfig(uint8_t _ADDR);
 float getTemp();
 void stopConversion();
 void startConversion();

private:
 float calcTemp(int msb, int lsb);
 uint8_t _addr;
 uint8_t _temp[2];
};
#endif

Listing 12-11 defines all the valid device addresses that can be used with the object. It is configured so that
when reading the data sheet, the hexadecimal I2C address can be used as listed. Since the header file only shows the
signature for the functions, we can tell what the class name, constructor, and destructor are for the defined object.

Note ■ With the aVr gCC, there is not effective memory management. objects will not get deleted, so the constructor
is not used and can be eliminated from the code.

As there is no effective memory management, the destructor is not used and no memory will be deallocated. The
private variables are declared here, and the compiler will enforce them. If you try to directly access _addr, _temp[2],
or calcTemp(), the compiler will show an error indicating that you are trying to access private values. By reviewing
this code, you can get a quick idea of the functions and the types of parameters that are defined. This information will
be used to ensure that the implementation corresponds to the values that are represented in the header file.

It is possible to describe more than one object in a single header file, but this can confuse library users, so it is
best to create only one object per header file. If a set of objects will never be used separately from one another, it may
make sense to define more than one object in the same header file.

Listing 12-12. DS1631 I2C temperature sensor implementation DS1631.cpp

#include <Wire.h>
#include "DS1631.h"

Chapter 12 ■ Writing Your oWn arduino Libraries

255

uint8_t _temp[2];
uint8_t _addr;

DS1631::DS1631(uint8_t _ADDR)
{
 //Cannot use Wire.begin() here because at declaration time it is unavailable.
 //Shift the address so the user can use the address as described in the Datasheet
 _addr = _ADDR >> 1;
}

void DS1631::begin()
{
}

void DS1631::stopConversion()
{
 Wire.beginTransmission(_addr);
 Wire.write(0x22); //stop conversion command
 Wire.endTransmission();
}

void DS1631::startConversion()
{
 Wire.beginTransmission(_addr);
 Wire.write(0x51); //start conversion command
 Wire.endTransmission();
}

byte DS1631::getConfig()
{
 byte config;
 stopConversion();
 Wire.beginTransmission(_addr);
 Wire.write(0xAC); //get configuration command
 Wire.endTransmission();
 Wire.requestFrom(_addr, (uint8_t) 0x01); //The configuration is one byte get it
 while (Wire.available())
 {
 config = Wire.read();
 }

 Wire.endTransmission();
 startConversion();
 return config;
}

void DS1631::setConfig(uint8_t config)//configuration options
{
 stopConversion();
 Wire.beginTransmission(_addr);
 Wire.write(0xAC); //get configuration command

Chapter 12 ■ Writing Your oWn arduino Libraries

256

 Wire.write(config); //configure with options
 Wire.endTransmission();
 startConversion();
}

float DS1631::getTemp() //0xAA command Read Temp, read 2 bytes, one shot temperature read
{
 unsigned char _temp[2];
 int count = 0;

 Wire.beginTransmission(_addr);
 Wire.write(0xAA); // start reading temperature now
 Wire.endTransmission();

 delay(750); //750ms reqiured to get 12 bit resolution temperature
 Wire.requestFrom(_addr, (uint8_t)2); //get the 2 byte two's complement value back
 while(Wire.available())
 {
 _temp[count] = Wire.read();
 count++;
 }
 float temp = calcTemp(_temp[0],_temp[1]);
 return temp;
}

float DS1631::calcTemp(int msb, int lsb)
{
 float num = 0.0;
 //Acceptable, but only 2-3 significant digits
 // num = ((((short)msb<<8) | (short)lsb)>>6) / 4.0;
 lsb = lsb >> 4; // shift out the last 4 bits because they are 0
 if (msb & 0x80) // Compare the sign bit = 1, then less than 0;
 {
 msb = msb - 256;
 }
 // Float conversion
 num = (float) (msb + lsb*0.0625);
 return num;
}

The work of implementing the header file is done in the implementation file. Each of the I2C commands needs
to be configured exactly to the data sheet. The constructor takes the defined address and shifts it the required one bit
in order to be a proper address on the I2C bus. The details of the I2C communication protocol are wrapped inside the
functions so that a library user only needs to have some knowledge of the data sheet.

We have a setConfig(uint8_t) and a uint8_t getConfig() that will accept and display the configuration of the
temperature sensor.

The datasheet explains that the temperature is in Celsius and is stored in two’s complement formats, which
mean that the most significant bit is the whole number, and the least significant bit is the decimal place. The float
getTemp() function returns the Celsius temperature by calling calcTemp(); this is a private function that the sketch
cannot call. There are many ways to do calcTemp(); it could be turned into a virtual function and be overridden by the
programmer, but by separating it from getTemp(), it is possible to add flexibility to the library.

r

Chapter 12 ■ Writing Your oWn arduino Libraries

257

Listing 12-13. DS1631 I2C main sketch DS1631Example.ino

/*
 * DS1631_CPP Library Example
 */

#include <Wire.h>
#include "DS1631.h"

uint8_t conf = 0x0C;
uint8_t dev1 = DEV0;

DS1631 TempSensor(dev1); //Wire.begin hasn't happened yet
void setup()
{
 Serial.begin(9600);
 Wire.begin();

 TempSensor.stopConversion();
 TempSensor.setConfig(conf);
 byte config = TempSensor.getConfig();
 Serial.print("Config: dev:");
 Serial.print(DEV0, BIN);
 Serial.print(" set: ");
 Serial.print(config, BIN);
 Serial.print(conf, BIN);
 Serial.print(" get: ");
 Serial.println(config, BIN);
}

void loop()
{
 float temp = TempSensor.getTemp();
 Serial.print("TempC: ");
 Serial.print(temp, 4);
 Serial.print(" tempF: ");
 Serial.println((temp*9/5) + 32, 4);
}

One key point is that Wire.begin() must be initiated for any I2C communication to occur. This explains why
Wire.begin() is established early in the setup() code, before TempSensor.setConfig(conf) is called. The Serial
library can print float values so the temperature returned as float would be printed automatically with two decimal
points, but because we have more detail, the code specifies four decimal places.

Lastly, it is possible to have up to eight DS1631 temperature sensors on one Arduino. In this version of the library,
the sketch would contain an array of sensors each configured with their own address, as follows:

DS1631 TmpSense[8] = {
 DS1631(DEV0),
 DS1631(DEV1),
 DS1631(DEV2),
 DS1631(DEV3),

Chapter 12 ■ Writing Your oWn arduino Libraries

258

 DS1631(DEV4),
 DS1631(DEV5),
 DS1631(DEV6),
 DS1631(DEV7)
};

This code initializes all of the possible DS1631 I2C devices and can be used to monitor all eight possible sensors.
You can access sensor four by calling TmpSense[4].getTemp(). You can use a for loop to read through the array and
obtain all the sensor values. Lastly, in order to get the most from the library, you must document how the device
names are defined; otherwise, users of the library will have to examine the header file and deduce all of the features.
Another benefit of using libraries is to organize convenience functions like Fahrenheit conversion as shown in the
loop code in Listing 12-13. A good follow up exercise is updating the library to support getTempC() and getTempF().

One benefit of using Listing 12-12 is that we abstract away the details of configuring the temperature sensor,
making the main sketch code simpler; we only need to configure and use the device. The library and the object
contain all the code that are typically cut and pasted into the main sketch. This allows the user to avoid major
headaches by using the temperature sensor instead of debugging the code.

Summary
Arduino libraries are powerful tools for sharing code between projects and users. This code is organized for bundling
and easy distribution. In this chapter we showed how to create libraries in a specific sketch directory. You can now
choose whether to write C style libraries or C++ object based libraries. Then, we explained how to convert that
directory into an Arduino wide library. The Motor controller evolved from a single sketch to a powerful library with
many helpful commands that control a robot or a set of motors. The other major example shows how to interact with
devices using the I2C protocol and makes those devices easier to access and use. We also reviewed the steps necessary
to take a library from a single project and make it available to all of your code system-wide. The next steps are to check
your library code into GIT and share the project with other Arduino users as we described in Chapter 2.

259

Chapter 13

Arduino Test Suite

Whether you are creating projects, sketches, or examples, testing is a skill that you will need. When you are developing
a product to share or sell, it is critical that both your hardware and software behave as expected. Having a test helps
people learn about how your project works. The Arduino Test Suite provides a way to prove that your product is
functioning correctly. Incorporating tests into a project helps highlight the fixes and improvements that you have
made. Additionally, using the social coding principles we described in Chapter 2, users are encouraged to submit
issues to http://github.com/arduino/tests, including test examples, to demonstrate problems and verify the
resolution of those problems. The more confidence people have in your product, the better.

The Arduino Test Suite library allows you to create a standard test suite for your own software and the Arduino
software. This library provides a simple, standard way to build these tests. Each test suite run provides output
formatted in the Arduino test result format. This output can be parsed by continuous integration testing software, like
Jenkins, which can be found at http://jenkins-ci.org/. These tests can be added to your project’s official list of
automatic tests, which run every time code is changed in the project’s repository.

In this chapter, I will

Go through the basic features of the Arduino Test Suite•	

Show how the built-in tests can be used with a custom test shield•	

Provide a basic procedure using the Arduino Test Suite to create a comprehensive test that •	
tests your project and code libraries

Provide an example of testing memory usage•	

Show an example of how to test the Serial Peripheral Interface (SPI) library•	

You are encouraged to create your own tests and submit them as official tests. They way this occurs is that you
would “fork” the project, and create a new tests or modify an existing test for the project in your own repository. Then
send a pull request for the change to the Arduino Test project in GitHub. This process is described in detail described
in Chapter 2. You can also file issues for the project that suggest changes and improvements.

Installing the Arduino Test Suite
The Arduino Test Suite is located on GitHub in the Arduino Tests project, at http://github.com/arduino/tests.
You can download, install, or clone the code into your sketch library folder. In this case, since the Arduino Test Suite
is an Arduino library, the code will be installed in your libraries folder.

You can download the library from the http://github.com/arduino.tests download link, or, if you have
installed Git, as explained in Chapter 2, you can issue the following command from libraries directory:

git clone https://github.com/arduino/Tests ArduinoTestSuite

http://github.com/arduino/tests
http://jenkins-ci.org/
http://github.com/arduino/tests
http://github.com/arduino.tests
https://github.com/arduino/Tests

Chapter 13 ■ arduino test suite

260

When you restart Arduino, the Arduino Test Suite will appear in the user-contributed libraries, as shown in
Figure 13-1. All of the example tests are in a dedicated folder in the Tests library, and these can be loaded from the
Examples drop-down list in the Arduino IDE.

To verify that Arduino Test Suite is working, compile and upload the ATS_Constants example sketch to your
hardware, as shown in Listing 13-1. On the serial monitor, you should see each result come back as OK. This indicates a
successful test.

Listing 13-1. Arduino Test of Arduino Constants

#include <ArduinoTestSuite.h>

//**
void setup()
{
 Int startMemoryUsage;

 //Start memory usage must be site prior to ATS_begin
 startMemoryUsage = ATS_GetFreeMemory();
 ATS_begin("Arduino", "Test of Arduino Constants");
 /*
 * Test Run Start
 */

 //test true constant
 ATS_PrintTestStatus("1. Test of true constant", true == 1);

 //test false consts
 ATS_PrintTestStatus("2. Test of false constant", false == 0);

 //Test of HIGH == 1
 ATS_PrintTestStatus("3. Test of HIGH == 1", HIGH == 1);

 //Test of LOW == 0
 ATS_PrintTestStatus("4. Test of LOW == 0", LOW == 0);

Figure 13-1. Arduino Test Suite installed in the sketch library folder

Chapter 13 ■ arduino test suite

261

 ???//Test of INPUT == 1
 ATS_PrintTestStatus("5. Test of INPUT == 1", INPUT == 1);

 ???//Test of OUTPUT == 0
 ATS_PrintTestStatus("6. Test of OUTPUT == 0", OUTPUT == 0);

 //test decimal
 ATS_PrintTestStatus("7. Test of decimal constant", 101 == ((1 * pow(10,2)) + (0 * pow(10,1)) + 1));

 //test binary
 ATS_PrintTestStatus("8. Test of binary constant", B101 == 5);

 //test octal
 ATS_PrintTestStatus("9. Test of octal constant", 0101 == 65);

 //test hexadecimal
 ATS_PrintTestStatus("7. Test of hexadecimal constant", (0x101 == 257));

 /*
 * Test Run End
 */
 ATS_ReportMemoryUsage(startMemoryUsage);
 ATS_end();

}

//**
void loop()
{
}

Once the code is uploaded to the Arduino, you can connect to the serial port and view the test results. They
should look like Figure 13-2.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 13 ■ arduino test suite

262

Figure 13-2 shows the results of 11 tests, all which passed with an OK. If any of these tests fail, something is likely
wrong with your Arduino environment, since the constants should always be defined. Now you are ready to run the
example tests and create your own tests.

Getting Started with Testing
Testing Arduino helps to verify your hardware configuration and the logic of your software, and ensures that your
Arduino-inspired board works exactly as expected. To begin, brainstorm the things that you want to test. Create a list
and focus on one area at a time. It is effective to number the tests in your sketch and systematically work through each
area. Each test you create should test one condition and verify the pass or fail result. In some cases, a function or a value
is supposed to have false value as an expected result to be the success if the output is correct it’s considered a success.

Within the Arduino community, it is common to use examples instead of tests. Examples function similarly to
tests, but while a test results in either pass or fail, an example allows you to compare what you thought would happen
to what actually happens. There are many reasons for testing, including debugging code and observing the behavior
of a remote control or line-following robot. Even more importantly, when we create libraries to share with others,
we want to ensure that the code works and is easy for people to use. The goal of the Arduino Test Suite is to convert
examples into official tests, which you can distribute with your libraries and sample codes, allowing others to learn
from them. When someone files an issue against your code, they (or you) can add a test that shows where and how the
problem was fixed.

Figure 13-2. Arduino test results

Chapter 13 ■ arduino test suite

263

The Arduino Test Suite comes with a test skeleton. This is the smallest test possible, which makes it a good starter
sketch. This is shown in Listing 13-2.

Listing 13-2. Minimal Test Sketch

#include <ArduinoTestSuite.h>

//**
void setup()
{
 ATS_begin("Arduino", "My bare bones tests");
 testTrue();
 ATS_end();
}
void testTrue()
{
 boolean result;
 result = true;
 ATS_PrintTestStatus("My bare bones test", result);
}
void loop()
{
}

Listing 13-2 shows the standard sketch structure. The tests are placed in setup(), so they are only run once.
They can also be placed in loop(), which would run them multiple times; this can be useful if you are testing
time and repetition issues. You can put your tests in loop() as long as you include while(1){} after the tests are
complete.

In order to access the tests, you need to import the Arduino Test Suite with the #include <ArduinoTestSuite.h>
line. Remember that tests need a name and an expected result. In this case, we create a Boolean variable called result.
Our goal is to show that the result is TRUE. Here’s where we begin:

 ATS_begin("Arduino", "My bare bones tests");

This sets up the test suite run and initializes the starting conditions. Then you can do anything you need to,
including setting up variables, calling libraries, and calling any function that you are testing. The test result is set as an
outcome of the code, and the status is printed to the serial port:

ATS_PrintTestStatus("My bare bones test", result);

Finally, once ATS_end() is called, the test is over and you can clean up.
An even better option for testing is to place each test in its own function. That way, it is more clearly isolated from

other tests and side effects are largely avoided.
The results of the tests appear in the serial monitor format shown in Listing 13-3.

Listing 13-3. Minimal Test Sketch Results

info.MANUFACTURER = Arduino
info.CPU-NAME = ATmega328P
info.GCC-Version = 4.3.2
info.AVR-LibC-Ver = 1.6.4
info.Compiled-date = Oct 20 2010

Chapter 13 ■ arduino test suite

264

info.Test-Suite-Name = My bare bones tests
info.Free-memory = 1464 bytes
My bare bones test ... ok

Ran 1 tests in 1.371s

OK

The final OK shows that all tests passed and took a total time of 1.31 seconds. They passed because we created
a result variable that held a true value, which was then passed to the ATS_PrintTestStatus() function. It has this
function signature:

void ATS_PrintTestStatus(char *testString, boolean passed);

This char *testString is the test name, and boolean passed is the test result.

Arduino Test Result Format
The Arduino test result format is based on the standard test format used by the Nose testing library from Python
(https://nose.readthedocs.org/en/latest/). This format uses verbose mode so that all tests are listed with their
outcomes. The output of the format is compatible with several different automated test systems. Since memory is
limited and we want to preserve it for the tests as opposed to the testing library, this format is not based on an XML
format. Each test must be discrete, and if one element fails, the incomplete XML file will be invalid and unusable.
However, you can parse the output and change it to an xUnit test structure.

Another common use of the Arduino Test Suite is to use it to test the compiler toolchain to ensure that the
compiler, and it’s support programs running your code properly. It is important for nonstandard compilers to check
if an Arduino compiler upgrade is compatible with the Arduino API. The result format has a set of common data that
allows you to know what toolchain your code is being compiled against. This is helpful because you can verify an
upgraded GCC compiler or AVR-libc and be assured that your code functions, thanks to a passing test result. Another
feature of the format is the ability to identify the manufacturer so you know what platform and microcontroller you are
testing against. This way, you can test an entire family of Arduinos and clones and know that they are compatible with
your code, libraries, or project. Each test has a date, time, and name, so you can keep track of the different tests.

Test Result Section Format Details
The test result file begins with information data. This is indicated by the info. at the beginning of the line, as shown in
Listing 13-4.

Listing 13-4. Test Header Info Fields

info.MANUFACTURER = Arduino
info.CPU-NAME = ATmega328P
info.GCC-Version = 4.3.2
info.AVR-LibC-Ver = 1.6.4
info.Compiled-date = Oct 4 2010
info.Test-Suite-Name = general

The header information section is followed by the test section, which includes the test results.

https://nose.readthedocs.org/en/latest/

Chapter 13 ■ arduino test suite

265

Test-Naming Structure
The test format is identical for all tests. This makes it easier for other software to parse them. The format includes the
following items in the following order:

 1. The test name

 2. Information about the test (included in parentheses)

 3. Ellipsis points (i.e., ...)

 4. The test result status

The following line shows an example:

name of test (information about test) ... test result status

Test Status Options
The tests themselves only have three valid outcomes: success, failure, or error:

ok
FAIL
ERROR

Test Summary
That last section of the test is a summary. It includes information such as how many tests were run, how long they
took, and how many failures occurred. The test result summary is separated from the test by dashes, like so:

Here’s an example of the summary format, followed by final condition:

Ran n tests in Secs

OK
FAILED (failures=n)

The variable n is replaced by the correct number of tests, and the exact number of failures that occurred in the
test run.

Arduino Test Suite Basic Functions
The following functions allow you to start, print, and end tests, respectively. I’ll describe them in detail in the
following sections.

•	 ATS_begin()

•	 ATS_end()

•	 ATS_PrintTestStatus()

Chapter 13 ■ arduino test suite

266

ATS_begin
This is the function signature for ATS_begin:

void ATS_begin(char *manufName, char *testSuiteName);

Here are some examples of its usage:

ATS_begin("Arduino","My test suite.");
ATS_begin("Teensy", "My test suite.");
ATS_begin("Adafruit Motor Shield", "My motor shield tests.");

These are all valid examples of beginning statements. You can set the manufacturer of the board or shield and
test the suite name. The ATS_begin function initializes the serial interface so that you do not have to do this in your
test sketches. Once the test starts, it keeps track of the time and other summary test information, such as number of
failures.

ATS_PrintTestStatus
You use the test status to return the test result to the user. Here is the syntax of the ATS_PrintTestStatus function:

void ATS_PrintTestStatus(char *testString, boolean passed);

And here are some examples of its usage:

ATS_PrintTestStatus("1. Test result is TRUE test" , true);
ATS_PrintTestStatus("2. Test result is FALSE test (a false result is expected)" , false);

In the function, the argument test name is followed by a Boolean test result (true or false). All tests must pass or
fail. You can use a parentheses section to add a note about the test to clarify detail, if necessary. In the FALSE test case,
we must say that failure is expected, since we want to see the failure case. This is an unusual case so it’s important to
note it because interpreting the result could cause confusion.

Numbering is not automatic, so if you want to number your tests, put the numbering in the test name, like so:

ATS_PrintTestsStatus("1. my numbered test" , status);

ATS_end
ATS_end completes the test run. Test time and the final count of successful and failed tests are sent in the summary
format to the serial port.

void ATS_end();

Chapter 13 ■ arduino test suite

267

Using the Basic Functions
With these functions, you can create custom test suites and verify your code or project. The code in Listing 13-5 is an
example that forces a result to be TRUE or FALSE. It is important to keep track of all test results, but especially failure
conditions. This way at a glance the test issue can be found quickly. The failure condition can be described in the test
name, and the result would be TRUE, which will appear as OK in the result.

Listing 13-5. Bare-Bones Test Sketch

#include <ArduinoTestSuite.h>

//**
void setup()
{
 boolean result;
 ATS_begin("Arduino", "My bare bones tests");
 result = true;
 ATS_PrintTestStatus("My bare bones test", result);
 result = false;
 ATS_PrintTestStatus("1. My bare bones test", result);
 ATS_end();
}

void loop()
{
}

Here is the test result:

info.MANUFACTURER = Arduino
info.CPU-NAME = ATmega328P
info.GCC-Version = 4.3.2
info.AVR-LibC-Ver = 1.6.4
info.Compiled-date = Oct 20 2010
info.Test-Suite-Name = My bare bones tests
info.Free-memory = 1442 bytes
My bare bones test ... ok
1. My bare bones test ... FAIL

Ran 2 tests in 1.443s

FAILED (failures=1)

Once the test is complete, you will be able to see how many test were run, how long the tests took, and how many
failures occurred. You can examine the tests to identify what happened. Additionally, you will get information about
how much memory was available when you ran the tests. In this case, info.Free-memory shows that 1442 bytes were
free in this test run.

Chapter 13 ■ arduino test suite

268

Arduino Test Suite Built-In Tests
The Arduino Test Suite contains several built-in tests. These are very useful, as they standardize some of the basic
tests. Running these standard tests will help you confirm that a custom Arduino-derived board has the correct pin
numbers and behaves appropriately with the digital, analog, and PWM pins as the serial values are transmitted and
received. You will need to test for memory leaks or heap fragmentation if things go wrong. The built-in tests are as
follow:

ATS_ReportMemoryUsage(int _memoryUsageAtStart)
ATS_Test_DigitalPin(uint8_t digitalPinToTest)
ATS_Test_PWM_Pin(uint8_t digitalPinToTest)
ATS_Test_AnalogInput(uint8_t analogPintoTest)
ATS_Test_EEPROM(void)
ATS_TestSerialLoopback(HardwareSerial *theSerialPort, char *serialPortName)

For the Serial port test the RX/TX pins to be wired to one another. This loops the input and output of serial
information into each other for reading, and parsing by the test suite. However, the test results are delivered over the
first serial port, and the board is programmed through it. Therefore, you can’t test the port using this technique on the
Arduino Uno, the Arduino Mega has multiple serial so there is extra serial ports that can be tested so you can still get
the test results from the default serial.

Since these tests make the assumption that the board is wired for testing, you need to make sure your version of
Arduino matches the wiring in Figure 13-3 or 13-4.

Figure 13-3. Arduino Uno configured for testing

You would use the design in Figure 13-4 to test a board similar to the Arduino Mega.

Chapter 13 ■ arduino test suite

269

Strategies for Testing Your Own Arduino Derivative
The Arduino Test Suite contains all the necessary tests to verify that your board is fully functional. For creating a custom
board to be compatible with the Arduino Uno or Mega pin layout, the Arduino Test Suite contains the ATS_General test.
This test checks all the features of these two boards, including digital pins, PWM, analog read/write, EEPROM, tone,
and serial RX/TX. If your custom board can pass these tests, then the board is pin-for-pin and feature compatible.
You can save time and money by identifying problems early.

The ATS_General test requires that you wire the pins in a specific way. The digital I/O pins are tied together, the
analog read/write pins are tied together, and serial RX/TX pins can also be tied together. For a board with only one
serial port, you will want to skip the RX/TX test. This is detected in the current ATS_General test.

You would use the same wiring options like we’ve done with the Arduino Uno board in Figure 13-3. You would be
configured for testing. You can do something similar for your own board.

Memory Testing
The Arduino Test Suite provides a test for checking the amount of free memory available. This function is particularly
useful for checking how much memory is being consumed and if it is being returned after use. You can find out how to
use this function by studying the tests. This section will look at a subset of these tests and then demonstrate using this
function to track memory usage and create a test that involves memory use. Listing 13-6 shows the code that we will
examine. The complete test is part of the ATS examples. We will look at three tests:

•	 testAllocatingThenDeallocatingPreservesFreeMemory();

•	 testAllocatingAndDeallocatingSmallerPreservesFreeMemory();

•	 testRepeatedlyAllocatingAndDeallocatingMemoryPreservesFreeMemory();

Figure 13-4. Arduino Mega test wiring

Chapter 13 ■ arduino test suite

270

Listing 13-6. ATS_GetFreeMemory Tests Example, from Matthew Murdoch

#include <ArduinoTestSuite.h>

void setup() {
 ATS_begin("Arduino", "ATS_GetFreeMemory() Tests");

 testAllocatingThenDeallocatingPreservesFreeMemory();
 testRepeatedlyAllocatingAndDeallocatingMemoryPreservesFreeMemory();

 testAllocatingAndDeallocatingSmallerPreservesFreeMemory();

 ATS_end();
}

// This test checks that the free list is taken into account when free memory is calculated
// when using versions of free() which *don't* reset __brkval (such as in avr-libc 1.6.4)
void testAllocatingThenDeallocatingPreservesFreeMemory() {
 int startMemory = ATS_GetFreeMemory();

 void* buffer = malloc(10);
 free(buffer);

 ATS_PrintTestStatus("Allocating then deallocating preserves free memory", startMemory ==
 ATS_GetFreeMemory());
}

// This test checks that the free list is taken into account when free memory is calculated
// even when using versions of free() which *do* reset __brkval (such as in avr-libc 1.7.1)
void testAllocatingAndDeallocatingInterleavedPreservesFreeMemory() {
 void* buffer1 = malloc(10);
 int startMemory = ATS_GetFreeMemory();

 void* buffer2 = malloc(10);
 free(buffer1);

 ATS_PrintTestStatus("Interleaved allocation and deallocation preserves free memory",
 startMemory == ATS_GetFreeMemory());

 free(buffer2);
}

void testRepeatedlyAllocatingAndDeallocatingMemoryPreservesFreeMemory() {
 int startMemory = ATS_GetFreeMemory();

 for (int i = 0; i < 10; i++) {
 void* buffer1 = malloc(10);
 void* buffer2 = malloc(10);
 void* buffer3 = malloc(10);
 free(buffer3);

Chapter 13 ■ arduino test suite

271

 free(buffer2);
 free(buffer1);
 }

 ATS_PrintTestStatus("Repeated allocation and deallocation preserves free memory",
 startMemory == ATS_GetFreeMemory());
}

// TODO MM Currently fails as __brkval is not increased, but the size of the free list is...
// Therefore looks as if the total amount of free memory increases (i.e. negative memory leak)!
void testReallocatingSmallerPreservesFreeMemory() {
 int startMemory = ATS_GetFreeMemory();

 // Allocate one byte more than the space taken up by a free list node
 void* buffer = malloc(5);
 buffer = realloc(buffer, 1);
 free(buffer);

 ATS_PrintTestStatus("Reallocating smaller preserves free memory",
 startMemory == ATS_GetFreeMemory());
}

void testReallocatingLargerPreservesFreeMemory() {
 int startMemory = ATS_GetFreeMemory();

 void* buffer = malloc(1);
 buffer = realloc(buffer, 5);
 free(buffer);

 ATS_PrintTestStatus("Reallocating larger preserves free memory",
 startMemory == ATS_GetFreeMemory());
}

void testAllocatingAndDeallocatingSmallerPreservesFreeMemory() {
 int startMemory = ATS_GetFreeMemory();

 // Allocate one byte more than the space taken up by a free list node
 void* buffer = malloc(5);
 free(buffer);
 buffer = malloc(1);
 free(buffer);

 ATS_PrintTestStatus("Allocating and deallocating smaller preserves free memory",
 startMemory == ATS_GetFreeMemory());
}

void testReallocatingRepeatedlyLargerPreservesFreeMemory() {
 int startMemory = ATS_GetFreeMemory();

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 13 ■ arduino test suite

272

 void* buffer = malloc(2);
 for (int i = 4; i <= 8; i+=2) {
 buffer = realloc(buffer, i);
 }
 free(buffer);

 ATS_PrintTestStatus("Reallocating repeatedly larger preserves free memory",
 startMemory == ATS_GetFreeMemory());
}

void loop() {
}

Example: Testing for a Memory Leak
Any new values created inside the memory test will use memory. So, you must declare all the variables that consume
memory at the beginning of the setup.

startMemoryUsage = ATS_GetFreeMemory();

Once this is done, your starting memory is set. Anything that takes without putting back will be counted as a
failure. The memory test is over when you call the following:

ATS_ReportMemoryUsage(startMemoryUsage);

Here are some hints for debugging:

By putting the memory test at the bottom of the code, you can gradually move it higher into •	
the code and see where the memory was lost.

An •	 OK indicates that the memory loss occurred below the memory test.

A binary search will help you find the problem.•	

Listing 13-7 is a sketch of the testing skeleton.

Listing 13-7. Sketch of the Testing Skeleton

#include <ArduinoTestSuite.h>

//**
void setup()
{
 int startMemoryUsage;

 //startMemoryUsage must be set directly before ATS_begin
 startMemoryUsage = ATS_GetFreeMemory();
 ATS_begin("Arduino", "Skeleton Test");
 /*
 * Test Run Start
 * Test one passes because result is set to true
 * Test two fails becuase result is set to false
 * You can test memory for any set of tests by using the ATS_ReportMemoryUsage test

Chapter 13 ■ arduino test suite

273

 * There is also a way to print current memeory for debugging
 */
 ATS_PrintTestStatus("1. Test of true test status", true);
 ATS_PrintTestStatus("2. Test of false test status, this will fail.", false);
 ATS_ReportMemoryUsage(startMemoryUsage);
 /*
 * Test Run End
 */
 ATS_end();
}
//**
void loop()
{
}

Here is the test result:

info.MANUFACTURER = Arduino
info.CPU-NAME = ATmega328P
info.GCC-Version = 4.3.2
info.AVR-LibC-Ver = 1.6.4
info.Compiled-date = Oct 20 2010
info.Test-Suite-Name = Skeleton Test
info.Free-memory = 1322 bytes
1. Test of true test status ... ok
2. Test of false test status, this will fail. ... FAIL
Memory Usage ... ok

Ran 3 tests in 1.508s

FAILED (failures=1)

Testing Libraries
One of goals of this chapter is to make it possible to test your own libraries. In this section, we will test an Arduino
library, which can be used as a model for testing your own. We’ll test the SPI library, which is used to communicate
digitally with other electronic devices, such as temperature sensors, SD cards, and EEPROM, all of which all support
the SPI protocol. To test the SPI protocol of Arduino, we can make two Arduinos talk to each other. We will connect
them as a master-and-slave device.

The tests will be from the point of view of the master and ensure that the functions defined in the library work
correctly. The tests will be part of the sketch that we load onto the master Arduino. The slave Arduino will be loaded
with a sketch that configures it in slave mode and provides a set of information that will return known data to the
master.

Figure 13-5 shows the two Arduinos configured in master-and-slave configuration. Pins 10, 11, 12, and 13 are tied
together between them. Power and ground are connected so that the slave Arduino is powered by the master.

Chapter 13 ■ arduino test suite

274

We will use the Arduino SPI master test sketch and an Arduino SPI slave sketch, which will process the
commands, expected returns, and values from the master, and confirm that an action occurred properly. Listing 13-8
shows the configuration of the slave SPI Arduino.

Listing 13-8. SPI_Slave_test.ino

/*
* SPI Slave test program
 * by Rick Anderson
 *
 * Set the defaults:
 * MSBFIRST
 * DataMode = SPI_MODE0;
 * Clock divider = SPI_CLOCK_DIV4,
 */

#include <SPI.h>

const byte TESTBYTE = 0b11110000;

void setup()
{
 Serial.begin(9600);

Figure 13-5. Arduino SPI master-slave wiring

Chapter 13 ■ arduino test suite

275

 //Slave out needs to be enabled by placing the MISO as OUTPUT
 pinMode(MISO, OUTPUT);

 //Use the AVR Code to turn on slave mode
 SPCR |= _BV(SPE);

 //Standard Arduino settings for SPI
 SPI.setBitOrder(MSBFIRST);
 SPI.setDataMode(SPI_MODE0);
 SPI.setClockDivider(SPI_CLOCK_DIV4);

 //Turn on interrupts for SPI
 SPI.attachInterrupt();
 Serial.println("Slave Configured");

}

/*AVR SPI interrupt callback
*Process commands sent to slave
* First transfer is the command value
* Second command pushes the value to the master
*/
ISR (SPI_STC_vect)
{
 const byte cc = TESTBYTE;
 if (SPDR == 0x00) //Only command is 0x00
 {
 SPDR = 0b11110000; // read byte from SPI Data Register
 }
 else
 {
 SPDR = 0b11111111; //Any other command returns 0xff
 }
}

void loop()
{
 Serial.println("SPI Slave Sketch for testing SPI Master.");
 if (digitalRead (SS) == HIGH)
 {
 SPDR = 0;//When not enable set buffer to 0
 }
}

This kind of test requires an Arduino to be configured in slave mode. In order to get the slave to be in SPI slave
mode, you must use AVR code. SPCR |= _BV(SPE); enables slave mode for AVR SPI. Additionally, the SPI interrupt
needs to be enabled. It is worth noting that you can use the Arduino SPI.attachInterupt() or call the AVR code
directly. In Listing 13-9, you can see that all the function does is call the AVR code.

Chapter 13 ■ arduino test suite

276

Listing 13-9. SPI.h attachInterrupt Code

void SPIClass::attachInterrupt() {
 SPCR |= _BV(SPIE);
}

Once the interruptions are turned on, you must write the callback function that will run once the SPI interrupt is
triggered. This function is

ISR (SPI_STC_vect) {}

Each function of the SPI library, as well as part of the master Arduino sketch, will need to be tested. The SPI
library has defined the following functions:

•	 begin()

•	 end()

•	 setBitOrder()

•	 setClockDivider()

•	 setDataMode()

•	 transfer()

The begin() function instantiates the SPI object. This test will instantiate SPI and determine if the SPI object was
created by setting the pin modes for the SPI lines and configuring the hardware SPI feature in master mode.

The end() function disables the SPI configuration using the following AVR code:

SPCR &= ~_BV(SPE);

This leaves the pin modes as they were: INPUT and OUTPUT.
Given the functions in the SPI library, we can now test them in use. Listing 13-10 is the SPI master test code. The

online version provides the full test, https://github.com/ProArd/SPI_Master_test. We will look at a few of the key
test cases and examine how they work.

Listing 13-10. SPI_Master_test.ino

#include <ArduinoTestSuite.h>
#include <SPI.h>

void setup ()
{
 // Serial.begin(9600);
 ATS_begin("Arduino", "SPI Tests");
 SPI.begin();
 //Run tests
 refConfig();

 testTransfer();
 refConfig();

 testBitOrderMSB();
 refConfig();

https://github.com/ProArd/SPI_Master_test

Chapter 13 ■ arduino test suite

277

 testBitOrderLSB();

 testDataMode();
 refConfig();

 testClockDivider();

 SPI.end();
 ATS_end();
}

void refConfig()
{
 SPI.setBitOrder(MSBFIRST);
 SPI.setDataMode(SPI_MODE0);
 SPI.setClockDivider(SPI_CLOCK_DIV4);
}
byte SPITransfer(byte val, uint8_t spi_bitorder, uint8_t spi_mode, uint8_t spi_clockdivider)
{
 byte spireturn;
 SPI.setBitOrder(spi_bitorder);
 SPI.setDataMode(spi_mode);
 SPI.setClockDivider(spi_clockdivider);
 digitalWrite(SS, LOW);
 spireturn = SPI.transfer(val);
 delayMicroseconds (10);
 spireturn = SPI.transfer(0x00);
 digitalWrite(SS, HIGH);
 return spireturn;
}

void testTransfer()
{
 boolean result = false;
 byte spireturn;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV4);

 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("1. transfer(0x00)", result);
}

void testBitOrderMSB()
{
 //Sets the bit order to MSBFRIST expects byte 0xf0
 boolean result = false;
 byte spireturn;

Chapter 13 ■ arduino test suite

278

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV4);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("2. setBitOrder(MSBFIRST)", result);
}

void testBitOrderLSB()
{
 //Sets the bit order to LSBFRIST expects byte 0xf
 boolean result = false;
 byte spireturn;

 spireturn = SPITransfer(0x00, LSBFIRST, SPI_MODE0, SPI_CLOCK_DIV4);
 if (spireturn == 0xf)
 {
 result = true;
 }
 ATS_PrintTestStatus("3. setBitOrder(LSBFIRST)", result);
}

void testDataMode()
{
 //asserting the default mode is true
 boolean result = false;
 byte spireturn;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV4);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("4. setDataMode(SPI_MODE0)", result);

 result = false;
 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE1, SPI_CLOCK_DIV4);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("5. setDataMode(SPI_MODE1) should fail so reports ok", !result);

 result = false;
 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE2, SPI_CLOCK_DIV4);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("6. setDataMode(SPI_MODE2) should fail so reports ok", !result);

Chapter 13 ■ arduino test suite

279

 result = false;
 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE3, SPI_CLOCK_DIV4);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("7. setDataMode(SPI_MODE3) should fail so reports ok", !result);
}

void testClockDivider()
{
 //asserting the default mode is true
 boolean result = false;
 byte spireturn;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV2);
 //Slave is CLOCK_DIV4 so this should fail
 if (spireturn == 0xf0)
 {
 result = true;
 }

 ATS_PrintTestStatus("8. setClockDivider(SPI_CLOCK_DIV2) should fail so reports ok", !result);
 result = false;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV4);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("9. setClockDivider(SPI_CLOCK_DIV4)", result);
 result = false;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV8);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("10. setClockDivider(SPI_CLOCK_DIV8)", result);
 result = false;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV16);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("11. setClockDivider(SPI_CLOCK_DIV16)", result);
 result = false;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV32);
 if (spireturn == 0xf0)

Chapter 13 ■ arduino test suite

280

 {
 result = true;
 }
 ATS_PrintTestStatus("12. setClockDivider(SPI_CLOCK_DIV32)", result);
 result = false;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV64);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("13. setClockDivider(SPI_CLOCK_DIV64)", result);
 result = false;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV128);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("14. setClockDivider(SPI_CLOCK_DIV128)", result);
 result = false;
}

void loop (){}

SPI.transfer() Test
SPI.transfer() is the main function of this library. In the past, we’ve used it to verify that data was sent properly
between various configurations. Now we want to test if it sends data as defined in the API. A byte should be sent to the
slave device, and a byte will be received as the return value from the slave device, as shown in Listing 13-11.

Listing 13-11. Data Transfer Test

void testTransfer()
{
 boolean result = false;
 byte spireturn;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV4);

 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("1. transfer(0x00)", result);
}

Chapter 13 ■ arduino test suite

281

setBitOrder() Test
The bit order of the device must be matched by the Arduino communicating with it. There are two supported
configurations:

Least significant bit (LSB)•	

Most significant bit (MSB)•	

For the first test, the slave Arduino must be configured for LSB, and for the second test, the slave Arduino needs
to be configured to MSB, as shown in Listing 13-12.

Listing 13-12. setBitOrder MSB Test

void testBitOrderMSB()
{
 //Sets the bit order to MSBFRIST expects byte 0xf0
 boolean result = false;
 byte spireturn;

 spireturn = SPITransfer(0x00, MSBFIRST, SPI_MODE0, SPI_CLOCK_DIV4);
 if (spireturn == 0xf0)
 {
 result = true;
 }
 ATS_PrintTestStatus("2. setBitOrder: MSBFIRST", result);
}

setClockDivider() Test
The clock divider changes the SPI speed to be a multiple of the Arduino clock speed. This way, it is possible to change
the speed of the SPI bus to match that of the attached device. For this test, we need to set the clock divider at each of
its multiples and ask the attached Arduino for a piece of data that matches the clock speed, as shown in Listing 13-13.

Listing 13-13. setClockDivider Test for SPI_CLOCK_DIV2

void testClockDivider()
{
boolean result = false;
 byte spireturn;
 //SPI_MODE0 test 3
 setSlaveClockDivider(SPI_CLOCK_DIV2);
 SPI.setClockDivider(SPI_CLOCK_DIV2);

 spireturn = SPI.transfer(0x02);
 if (spireturn > 0)
 {
 result = true;
 }
 ATS_PrintTestStatus("4. setClockDivider:SPI_CLOCK_DIV2 (failure is OK)", result);
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 13 ■ arduino test suite

282

The test in Listing 13-13 is a testing condition for when the clock divider is set to twice the speed of the slave
device. This type of test is expected to fail. The code is written to discover the failure and report a completed test. A true
result is reported as a pass. The parentheses are used to indicate that the test is OK even though failure was expected.

setDataMode() Test
The data mode configures the clock phase and the polarity. For this to be tested, each mode must be set, and the slave
Arduino must send a piece of data that shows that it was received and returned properly, as shown in Listing 13-14.

Listing 13-14. SetDataMode Test for SPI_MODE0

void testDataMode()
{
boolean result = false;
 byte spireturn;
 //SPI_MODE0 test 3
 setSlaveDataMode(SPI_MODE0);
 SPI.setDataMode(SPI_MODE0);
 spireturn = SPI.transfer(0x02);
 if (spireturn > 0)
 {
 result = true;
 }
 ATS_PrintTestStatus("3. setDataMode: SPI_MODE0", result);
}

The test in Listing 13-14 will return a TRUE result if you can communicate with the slave device in that mode.
If a configuration or communication error occurs, it will fail.

SPI Test Results
In conclusion, the complete set of test runs shows that the expected configuration of the master and slave match.
The commands that are issued must be valid configurations of SPI in order to work correctly. If we change the
slave configuration, we have to change the master test, or else we will see expected failures due to mismatched
configurations.

There are many test cases within each of these variations. The full source for this on the Pro Arduino SPGitHub
repository, http://github.com/proardwebsite goes through many more test cases, each with a single change from
the last one. Another good challenge for SPI testing would be to reconfigure the slave device to iterate through each of
its configurations. Creating these tests proves that SPI is working and simultaneously gives you a chance to learn how
SPI works.

Summary
This chapter describes the features and benefits of the Arduino Test Suite. The goal is to show how to move from
creating examples that demonstrate your code to creating a test that verifies it. Not only is this good for code quality,
but it allows you to make custom circuits, shields, and your own verified Arduino-inspired device. As you share your
code and hardware with others, testing provides usage examples and behavior confirmation.

The challenge of creating testable conditions is not simple. The environment of the project must be included,
and users are encouraged to submit their tests to the Arduino testing project on GitHub. This ensures that the entire
platform is well tested and documented, and provides a high-quality user experience.

http://github.com/proardwebsite

A���������
accessory_filter.xml file, 72
Acer Iconia A100, 64
Acer Iconia A500, 64
ADB Wireless, 66
Android ADK

ADK demo kit, 64
Arduino IDE (see Arduino IDE)
devices, 64
framework completion

ADK monitor layout, 83
AndroidAccessory.h, 87
android:inputType flag, 84
Arduino, 87
BufferData class, 82
clearScreen and SendData functions, 86
data-handling function, 86
EditText box, 83–84
handleMessage function, 82
IncomingDataHandler, 86
main.xml, 84
new and edited functions,

CH5ExamplesActivity.java, 86
new function, 81
openAccessory function, 81
registerUIobjects function, 86
run function, 81
Runnable class, 81
serial monitor, 83
strings.xml file, 85
write function, 81

known working devices, 64
modding, 65
and SPI, 88

AndroidManifest.xml, 72–73
Android sensor networks

Android application
AChartEngine, 160–161
ChartFactory and GraphicalView, 163

clearScreen function, 167
incoming data handler

function, 166
main.xml file, 162–163
refreshChart function, 166
registerUIobjects function, 164–165
RES folder, 161
SensorChartView, 164
SetupGraph function, 164–165
strings.xml file, 163
super.onResume(), 165
SyncData function, 167
www.achartengine.org, 160
XYSeries variable, 164

Arduino
AndroidAccessory.h, 153
AT command response, 156–157
CheckForIncoming function, 155–156
data logger and ADK handler, 153–154
data logging, 157
isConnected function, 159
loop function, 154–155
reply packet, 158
SD buffer, 157
WaitForReply function, 160

openFrameworks
frame ID, 150
Graph visualization, 151
incoming data, 148
loop, 146–147
switch statement, 148–149
testApp.cpp, 146
testApp.h., 151
WaitForReply function, 149, 151

setting up
information collection, 144
ReadWrite sketch, 145
sensor log node, 145
sensor’s resolution, 144
simple sensor network, 144

Index

283
-

Android Virtual Device (AVD), 69
API Core 1.0.4

Arduino.h, 4
HardwareSerial, 5, 9
print, 6
Printable class, 8
String library, 8
updated serial object, 5
updated Stream class, 5
Wire library, 9

Arduino
analog sensors

disadvantages, 116
LadyADA temperature sensor reader code, 112
output, 114
RC low-pass filter, 112
TMP35 temperature sensor code, 111

ATmega 328P, 111
ATtiny family

Atmel family, 181
ATtiny 84/44/24, 181
ATtiny 85/45/25, 181
ATtiny 4313 and 2313, 182
Burn Bootloader option, 180
Google Code project, 179
Tools menu, 179–180

chipKIT, 169
circuit, 49
code verification, 48
coin-op games, 209
definition, 169
digital sensors

code verification, 121
gray code (see Gray code)
PWM, 117

disadvantages, 47
Expanding on the Idea

circuit, 60
code change, 60
code verification, 61

Firmata
Arduino circuit, 54
arduinoLoop() function, 56
arduinoSetup() function, 56
class function prototypes, 55
code verification, 57
I2C functionality, 56
on-the-fly configurations, 53
testapp.cpp, 56
testapp.h, 55
testing application, 54–55

game development (see Game development)
I2C communication method

code verification, 127
setups, 123, 125
simulated sensor code, 126

SRF10 Ultrasonic Ranger Finder, 123
TWAR register, 124
TWCR register, 124
TWDR register, 124
TWSR register, 125

in-system programmer, 183
integration, 59
low-cost chip, 169
main.cpp, 51
medal games, 209
merchandisers-style games, 209
MPIDE and chipKIT PIC32

built-in features, 171
Digilent chipKIT Uno32, 170
home page, 170
IR object detection, 173, 176–178
logic level converter, 172
PIC32 MCUs, 172
power up, 179
pull-up resistor, 172
SPI library, 171
Uno32 IR LED sensor, 173

ofArduino
key constants, 58
reference, class functions, 58

physical models, 47
redemption games, 209
reusability, 47
secret knock box

ATtiny Servo, 184
checkServo() function, 186
circuit diagram, 185
devices, 184
identification, 186–187
knock interval, 188
LEDs, 184
move-servo code, 186
properties, 186
SecretKnock object, 186
sketch, 185

serial functions, 49
serial sensors, 121
sets up coding, 48
testapp.cpp, 51
testapp.h, 51

Arduino 1.0.4 core changes
API Core 1.0.4 (see API Core 1.0.4)
API updates

pinMode, 3–4
Return types, 4
uint_8, 4

board updates and USB
Avrdude update, 9
AVR ISP, 13
AVRISP mkII, 13
bootloader, 13

■ index

284

firmware, 13
Leonardo board, 9, 11
Parallel programmer, 13
types and naming, 13
USBasp, 13
USBtinyISP, 13
variants files, 12
variant types and naming, 12

IDE, 1–2
sketches, 3

Arduino IDE
ADB functions, 65
ADB Wireless, 66
Android ADK application

accessory_filter.xml file, 72
AndroidManifest.xml, 72–73
code languages, 71
code verification, 80
event-driven GUI development, 71
main.xml, 72
res/layout/main.xml, 74
res/values/strings.xml, 75
res/xml/accessory_filter.xml, 74
src/ch5.example.proArduino/

CH5ExamplesActivity.java, 75
strings.xml, 72

Android application creation
Activity-creation options, 68
Activity name and layout options, 68–69
ADK blink, 67
API level setting, 67
application logo, 67
AVD, 69
BlankActivity, 68
Eclipse’s New Project dialog, 66
naming, 67
New Android App dialog, 67
Run As options, 69

Arduino sketch
AndroidAccessory object, 70
Arduino-to-Android configuration, 70
Circuits@Home libraries, 70
connection code, 71
isConnected function, 70
refresh function, 70
tracking and debugging, 70

development environment, 65
Eclipse IDE, 65
installation, 65
library, 65

Arduino libraries
vs. Arduino sketches, 237
C++, 237
creation

HelloLibrary cpp implementation file, 241
HelloLibrary.h, 240

HelloLibrarySketch.ino sketch, 241
“Hello World” programs, 239
position struct, 243
SimpleHello, New Tab option, 240
starter sketch code, 239
structures, 242
visualization, 239

folder anatomy
directory structure, 249
“import library” menu, 250
installation, 251
keywords.txt, 250
license file, 250
reference code, 251

hardware profile, 238
motor library

motor controller code, 244–246
motor controller header file, 246–248
motor controller main sketch, 248–249
3 pins, 244
robots, 244

and object conventions
begin() function, 251
destructor, 251
DS1631.cpp, 254–256
DS1631.h, 253–254
DS1631 I2C main sketch, 257
DS1631 temperature sensors, 257
getTempC() and getTempF() function, 258
I2C communication protocol, 256
I2C slave device, 252
internal commands, 252
setup() function, 251
Wire function, 251

potentiometer, 238
preprocessing scans, 238
prototype, 237

arduinoLoop() function, 56, 60–61
Arduino Mega ADK, 66
Arduino SD Reader, 89
arduinoSetup() function, 56
Arduino social development environment.

See also Social coding
fork your own repository of Arduino, 42
for Linux, 44
for Mac OS X, 44
for Windows, 43

Arduino Test Suite
Arduino Constants, 260–261
ATS_end(), 263
ATS_General test, 269
ATS_PrintTestStatus() function, 264
built-in tests, 268–269
functions

ATS_begin, 266
ATS_end, 266

■ index

285

ATS_PrintTestStatus, 266
Bare-Bones Test, 267

GitHub, 259
hardware configuration, 262
libraries

begin() function, 276
end() function, 276
master-and-slave device, 273
Pro Arduino website, 282
setBitOrder() Test, 281
setClockDivider() Test, 281
setDataMode() Test, 282
SPI.h attachInterrupt Code, 276
SPI master-slave wiring, 274
SPI_Master_test.ino, 276
SPI_Slave_test.ino, 274
SPI.transfer(), 280

mega pin layout, 269
memory testing, 269–271, 273
Minimal Test Sketch, 263
result format

information data, 264
Nose testing library, 264
summary, 265
test-naming structure, 265
test status options, 265
toolchain, 264
xUnit test structure, 264

serial monitor format, 263
sketch library folder, 260
standard sketch structure, 263
test skeleton, 263
*testString, 264

ASUS Eee Pad Transformer TF101, 64
Atmel ATmega32u4 chip, 9
ATS_begin, 266
ATS_end, 266
ATS_General test, 269
ATS_GetFreeMemory Tests, 270
ATS_PrintTestStatus() function, 264, 266
Avrdude update, 9

B���������
Bare-Bones Test, 267
Bootloaders, 13

C���������
CH5ExamplesActivity.java, 75
checkServo() function, 186
clearScreen function, 86
Coin-op game, 209
CyanogenMod 7, 65

D, E���������
Digilent SPI (DSPI), 171

F���������
Firmata

Arduino circuit, 54
arduinoLoop() function, 56
arduinoSetup() function, 56
class function prototypes, 55
code verification, 57
I2C functionality, 56
on-the-fly configurations, 53
testapp.cpp, 56
testapp.h, 55
testing application, 54–55

G���������
Game development

arcade and game resources, 235–236
arcade games, 210
BigWin() function, 214–215
board game, 210
button() function, 216
code verification, 217
displayLED() function, 213–214
DspLevel() function, 216
flashWin() function, 214–215
Gameduino (see Gameduino)
IncreaseLevel() function, 216
loop() function, 216
micro-win, 211
moveLED() function, 213, 216
noInterrupts() function, 216
notWin() function, 214–215
proof-of-concept, 211–212
register method, 212
resetPlay() function, 216
rigged mechanisms, 217
Stop It game, 211
testing concepts, 211
time delay, 217

Gameduino
art and graphics, 222–224
ascii() function, 220
begin() function, 219
buttonInterrupt() function, 226
code verification, 228
connection to Arduino Mega, 234–235
copy(address, data pointer, amount) function, 219
cubeMove array, 226, 228
cube_sprimg[], 224
cube_sprpal[], 224

■ index

286

Arduino Test Suite (cont.)

digital pins, 221
displaySprites() function, 226
fill(address, data, amount) function, 219
graphics platform, 218
image information, 224
IncreaseLevel() function, 227
keywords, 220
putstr function, 220
rd16(address) function, 219
rd(address) function, 219
resetPlay() function, 228
RGB function, 219
RowShift() function, 225
selfPlay() function, 232–234
setpal(palette, RGB) function, 219
setup() function, 225
SPI communication, 218
splash function, 231
sprite count, 225–226
sprite() function, 219
sprite2x2 function, 220
Stack It game, 221–222
stereo sounds, 229–230
use, 218, 226
voice() function, 220
WinState() function, 226
Wprogram.h, 219
wr16(address, data) function, 219
wr(address, data) function, 219

Git, 19
Google Galaxy Nexus, 64
Google Nexus S, 64
Gray code

Arduino sensor code, 120
digitalWrite() function, 119
Dr. Ayars’ code, 118
dual-output encoder, 117–118
pins, 117
reflected binary, 117
robotics, 117
simulation setup, 120

H���������
HyperTransport, 189

I, J, K���������
I2C communication method

bandwidth loss, 190
code verification, 127
disadvantages, 190
lines, 190
setups, 123, 125
simulated sensor code, 126

SRF10 Ultrasonic Ranger Finder, 123
TWAR register, 124
TWCR register, 124
TWDR register, 124
TWSR register, 125

IncomingDataHandler, 86
in-system programmer (ISP), 183
Integrated development environments (IDEs), 47

L���������
Leonardo board, 9, 11
LG Optimus Pad, 64

M���������
main.xml, 72
Markdown, 39
Medal games, 209
Memory test, 269–273
Merchandiser-style game, 209
Motorola Xoom, 64
Multiplatform IDE (MPIDE), 169
Multiprocessing

HyperTransport, 189
I2C communication method

bandwidth loss, 190
disadvantages, 190
lines, 190

serial peripheral interface (see Serial peripheral
interface (SPI))

supercomputing principles, 189
symmetric architecture bipolar bus (see Symmetric

architecture bipolar bus (SABB))
tightly coupled systems, 189

N���������
Nose testing library, 264

O���������
ofArduino

key constants, 58
reference, class functions, 58

ofSerial class, 53
openFrameworks

32-bit GNU/Linux, 50
C++ libraries, 47
code verification, 52
dependencies issues, 50
download and installation, 47
emptyexample, 50
IDEs, 47
libopenFrameworks, 50

■ index

287

main.cpp, 51
proof-of-concept project, 50
serial functions, 53
testapp.cpp, 51
testapp.h, 51
work ideas, 62

P, Q���������
Proportional-integral-derivative (PID) controllers

automotive cruise control, 138
vs. DEAD BAND controller, 135, 137
derivative statement, 131
integral statement, 130
online resources, 142
vs. ON/OFF controller, 136–137
output, 131
pH value, 138
proportional statement, 129–130
RC low-pass filter, 136
setup

code verification, 134
hardware wiring, 132
Tuner, 134

temperature systems controlling, 138
time, 131
tuning

Arduino and RC low-pass filter, 140
integral component, 139
library, 140

variables of, 129

R���������
ReceiveFromADK data stream, 81
Redemption games, 209
registerUIobjects function, 86
res/layout/main.xml, 74
res/values/strings.xml, 75
res/xml/accessory_filter.xml, 74
Return types, 4
Revision control. See Git

S, T���������
Samsung Galaxy Ace, 64
Samsung Galaxy S, 64
Samsung Galaxy Tab 10.1, 64
SendData function, 86
Serial peripheral interface (SPI)

abbreviations, 191
advantages, 191
Arduino pin reference, 208
Arduino-to-Arduino connections, 199

clock divider settings, 193
clock-generation modes, 197
clock-generation multipliers, 198
core, 207
data transfer shifting, 199
data transmission modes, 193
functionality, 195–196
interrupt vector, 195
master and slave communication steps, 200
master code register sketch, 200
master sketch, 194
master vs. slave pin modes, 197
Mega, 207
multiple slaves, 200
null byte, 200
pin configuration, 194
PORTB register, 208
register structure, 196
SABB, 206
slave sketch, 198
SPI.begin() function, 192
SPI enable (SPE), 197
SPI.end() function, 192
SPI interrupt enable (SPIE), 196
SPI interrupt flag (SPIF), 198
SPI.setBitOrder() function, 192
SPI.setClockDivider() function, 192
SPI.setDataMode() function, 193
standard lines, 194
transmission, 201
transmission line shielding, 208
write collision (WCOL), 198

setBitOrder() Test, 281
setClockDivider() Test, 281
setDataMode() Test, 282
Social coding

description, 15
documentation

create pages, 37
description, 37
Github wiki, 37
overview, 18
using Markdown, 39

issue management
connect version control with

issue management, 37
description, 35
with Github, 36
issue tracking process, 36
overview, 17

project description, 16
version code control

creating own project, 21
forking another project, 25
GitHub, 20

■ index

288

openFrameworks (cont.)

install Git, 19
overview, 17
work process, 23

Software Pulse Width Modulation Servo
(SoftPWMServo), 171

SoftwareSerial, 10
Software SPI (SoftSPI), 171
SPI.transfer() function, 193
SPI.transfer() Test, 280
SRF10 Ultrasonic Ranger Finder, 123
Stream member functions, 6
strings.xml, 72
Symmetric architecture bipolar bus (SABB)

connection block, 203
connection diagram, 205–206
definition, 202
disadvantage, 202
flow control, 203
logical and electrical connections, 202
master/slave topography, 203
SPI, 206

U, V���������
Updated print public methods, 7–8

W���������
Wire library, 9

X, Y, Z���������
XBees

API mode, 93
0x7E, 96
module configuration, 97

packet construction, 98
sending commands, 99
sending data, 99

Arduino data echo
AT command packets, 103
calcChecksum function, 105–106
checksum calculation, 104
error checking, 107
loop captures, 104
processPacket function, 105–106
serial monitor, 107
switch statement, 103, 105–106
variables, 104
X-CTU COM setting, 104

endpoint firmware
Arduino dual-direction

communication with sleep
mode communications, 108

ENDDEVICE, 107
HELLO packet, 107
sleep configuration types, 107
ZIGBEE END DEVICE API, 107

Moltosenso, 93
packet reference, 101
reply packets, 101, 103
series

mesh networking, 92
proprietary Digi mesh, 92
WiFi module, 92
Xtend, 92

transparent (AT command) mode, 93
Arduino setup, 95
code verification, 96
module configuration, 94

X-CTU, 93

■ index

289

Pro Arduino

Rick Anderson
Dan Cervo

Pro Arduino

Copyright © 2013 by Rick Anderson and Dan Cervo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-3939-0

ISBN-13 (electronic): 978-1-4302-3940-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Technical Reviewer: Cliff Wootton
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Christine Ricketts
Copy Editor: Damon Larson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com/9781430239390. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Source code is also available via GitHub, at http://github.com/ProArd.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430239390
www.apress.com/source-code/
https://github.com/ProArd

To all the beginners out there, the next great achievement
starts at the beginning.

—Rick Anderson

To everyone that made this subject possible and everyone that continues
to explore the edge of knowledge.

—Dan Cervo

vii

Contents

About the Authors ��� xvii

About the Technical Reviewer ��� xix

Acknowledgments ��� xxi

Introduction ��� xxiii

Chapter 1: Arduino 1�0�4 Core Changes ■ ���1

Changes to the Arduino IDE ���1

Changes to Sketches ���3

API Updates ���3

pinMode ��� 3

Return Types �� 4

uint_8 �� 4

Arduino API Core 1�0�4 ���4

Arduino�h ��� 4

Updated Serial Object �� 5

Updated Stream Class ��� 5

Print ��� 6

New Printable Class��� 8

Updated String Library ��� 8

Wire Library Updates ��� 9

HardwareSerial Updates �� 9

Physical Board Updates and USB Compatibility ��9

Avrdude Update ��� 9

The New Arduino Leonardo Board ��� 9

Board Variants ��� 11

■ Contents

viii

Uploader Options Renamed to Programmers �� 13

New Bootloaders ��� 13

USB Firmware for 16u2 ��� 13

Summary ���14

Chapter 2: Arduino Development and Social Coding ■ ���15

Components of Social Coding and Project Management ��15

What Is a Project and How Is It Organized? ��� 16

Overview of Version Control �� 17

Overview of Issue Tracking �� 17

Documentation �� 18

Project Management for Social Coding ���18

Version Control with Git and GitHub �� 19

What Is Git? ��� 19

Installing Git ��� 19

GitHub Tools ��� 20

Version Control, Basic Workflow ��21

Creating Your Own Project ��� 21

Editing Code and Checking for Changes �� 22

Work process ��� 23

Workflow Summary: Creating Your Own Project �� 25

Workflow Summary: Forking Another Project �� 25

Creating a Pull Request ��� 28

Creating a Pull Request ��� 30

How To Merge a Pull Request �� 32

What is issue management? ��� 35

Issue management with Github ��� 36

Connecting Version Control with Issue Management �� 37

Documentation ��37

Github wiki ��� 37

Creating Pages �� 37

Using Markdown �� 39

■ Contents

ix

Contributing to Arduino Development ���42

Forking Your Own Copy of Arduino �� 42

How to build the Arduino IDE from source ��43

Community Resources ��44

Summary ���45

Chapter 3: openFrameworks and Arduino ■ ���47

Getting Started ��47

Arduino Code ���48

Verifying the Code ��� 48

Arduino Serial Functions ��� 49

openFrameworks Setup ��50

Connecting to the Arduino from openFrameworks �� 50

Verifying the Code ��� 52

openFrameworks Serial Functions �� 53

Coding Once Using Firmata and ofArduino��53

Setting Up Firmata ��� 54

Controlling the Arduino with openFrameworks ��� 55

Verifying the Code ��� 57

Key Constants Used by ofArduino ��� 58

ofArduino Reference of Class Functions �� 58

Expanding on the Idea ���59

Changing Code �� 60

Verifying the Code �� 61

More Ideas to Work With ���62

Summary ���62

Chapter 4: Android ADK ■ ���63

Android Devices ��64

What to Check For ���64

■ Contents

x

Known Working Devices ��64

Modding ��65

Arduino IDE Setup ���65

Android Application Creation ��� 66

The Arduino Sketch�� 69

The Android ADK Application ��� 71

Completing the Framework ���80

Completing the Application �� 83

Arduino �� 87

Verifying the Code ��� 87

SPI and ADK ���88

Summary ���90

Chapter 5: XBees ■ ���91

Buying XBees ��91

Simple Setup ���93

Transparent (AT Command) Mode ���94

Module Configuration �� 94

Arduino Setup �� 95

Verifying the Code ��� 96

API Mode ���96

Module Configuration �� 97

API Packet Construction �� 98

Sending Commands��� 99

Sending Data ��� 99

Request Packets ��100

Reply Packets ��101

Arduino Data Echo ���103

Endpoint Firmware ��107

Summary ���109

■ Contents

xi

Chapter 6: Simulating Sensors ■ ��111

Analog Sensors ���111

Analog Sensor Reader ��� 112

RC Low-Pass Filter �� 112

Verifying the Code ��� 114

Resistor Ladder ��� 114

Verifying the Code ��� 116

Digital Sensors ��117

PWM �� 117

Gray Code �� 117

Serial Sensors ���121

Outputting Serial Data ��� 121

Verifying the Code ��� 123

I2C ���123

The TWCR Register �� 124

The TWAR Register �� 124

The TWDR Register �� 124

The TWSR Register �� 125

Outputting I2C Data ��� 125

Verifying the Code ��� 127

Summary ���127

Chapter 7: PID Controllers ■ ���129

The Mathematics ���129

The Proportional Statement ��� 129

The Integral Statement �� 130

The Derivative Statement �� 131

Adding It All Up �� 131

Time ��� 131

■ Contents

xii

PID Controller Setup ��132

Wiring the Hardware �� 132

Verifying the Code ��� 134

PID Tuner ���134

Comparing PID, DEAD BAND, and ON/OFF Controllers ���135

PID Can Control ���138

Tuning �� 138

PID Library ��� 140

PID Library Functions �� 140

Other Resources ��142

Summary ���142

Chapter 8: Android Sensor Networks ■ ��143

Setting Up a Sensor Network ��144

openFrameworks ��146

The Arduino ���152

The Android Application���160

Summary ���168

Chapter 9: Using Arduino with PIC32 and ATtiny Atmel Chips ■ ��������������������������������������169

Arduino and Nonstandard Environments ���169

The MPIDE and chipKIT PIC32 ���170

Example: Object Detection using the Task Manager service ��� 172

Arduino Support for the ATtiny Family ���179

ATtiny 85/45/25 ��� 181

ATtiny 84/44/24 ��� 181

ATtiny 4313 and 2313 �� 182

Using the Arduino as an ISP Programmer ���183

■ Contents

xiii

Project: Secret Knock Box ���184

What the Device Does �� 184

Bill of Materials �� 184

Summary ���188

Chapter 10: Multiprocessing: Linking the Arduino for More Power ■ ������������������������������189

I2C ���190

Serial Peripheral Interface���191

Connecting Two Devices ��192

Setting Up a Master SPI Device ��� 194

Verifying the Code ��� 195

Interrupting Vectors ��� 195

SPI by the Registers��� 196

Verifying the Code ��� 199

Multiple Slaves �� 200

Master in Register ��� 200

Verifying the Code ��� 201

Symmetric Architecture Bipolar Bus ���202

SABB by the Code �� 203

Verifying the Code ��� 205

Connecting SABB to SPI��� 206

Conversion to Mega���207

Physical Best Practices ���208

Summary ���208

Chapter 11: Game Development with Arduino ■ ���209

Games Suitable for the Arduino ���209

A Simple Game ��211

Proof of Concept �� 211

Coding Stop It �� 212

Verifying the Code ��� 217

Dirty Little Tricks, ��� 217

■ Contents

xiv

Adding Better Displays and Graphics ��218

Gameduino Library �� 218

A New Stop It ��� 221

Art �� 222

Coding Stack It �� 224

Verifying the Code ��� 228

Making Sounds �� 229

Adding a Bit of Splash ��� 231

Programming the Game to Play Itself �� 232

The Finishing Polish��� 234

Arcade and Game Resources ��� 235

Summary ���236

Chapter 12: Writing Your Own Arduino Libraries ■ ���237

What you need to know to write your own libraries ��237

Creating a simple library ��� 239

Making a Motor Library ���244

The anatomy of an Arduino library folder ��249

Examples Folder �� 250

License �� 250

keywords�txt �� 250

Installing Arduino Libraries �� 251

Using Arduino Libraries ��� 251

Arduino Objects and Library Conventions ���251

Summary ���258

Chapter 13: Arduino Test Suite ■ ��259

Installing the Arduino Test Suite ��259

Getting Started with Testing ��262

Arduino Test Result Format ���264

Test Result Section Format Details �� 264

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ Contents

xv

Arduino Test Suite Basic Functions �� 265

ATS_begin ��266

ATS_PrintTestStatus ��266

ATS_end ��266

Using the Basic Functions ���267

Arduino Test Suite Built-In Tests ��� 268

Strategies for Testing Your Own Arduino Derivative ��� 269

Memory Testing �� 269

Example: Testing for a Memory Leak ���272

Testing Libraries ��� 273

SPI�transfer() Test ��280

setBitOrder() Test ���281

setClockDivider() Test ��281

setDataMode() Test ��282

SPI Test Results ���282

Summary �� 282

Index �� 283

xvii

About the Authors

Rick Anderson is Director of Virtual Worlds for Rutgers University, Co-Director of NJ
Makerspaces, and Trustee of Fair Use Building and Research Labs. He’s also a sponsor
and judge at Hardware Hacking Hackathons, and a featured speaker at TEDxRutgers
2013. Rick teaches basic electronics, Minecraft Circuits in real life, Arduino, and
soldering for people of all ages. He designed the original Arduino Test Suite, and is
co-designer of the chipKIT Fubarino. His multiplatform code for Arduino 1.5,
cowritten with Mark Sproul, won the Blue Ribbon Editor’s Choice award at Maker
Faire 2011. Rick is currently working on Morse’s Secret Technology, a series of
steampunk robotics and Arduino projects.

Dan Cervo (Servo) is a project development director at MAD Fellows LLC,
a research and development company started by Doug Bebb and Dan. MAD Fellows
has embraced the Arduino and its culture as an essential cornerstone for scientific
development and rapid proofs of concept. Dan has worked in ballet, jewelry, and
commercial flight management systems. Dan is currently working on research in
metamaterials, computational science, iso geometrics, and robotic control theory.

xix

About the Technical Reviewer

Cliff Wootton is a former interactive TV systems architect at BBC News. The News Loops service developed there
was nominated for a British Academy of Film and Television Arts (BAFTA) award and won a Royal Television Society
Award for Technical Innovation. Cliff has been a speaker on preprocessing for video compression at the Apple WWDC
conference, and he has taught postgraduate students about real-world computing, multimedia, video compression,
metadata, and researching the deployment of next-generation interactive TV systems based on open standards.
He is currently working on R&D projects investigating new interactive TV technologies, he’s involved with the MPEG
standards working groups, and he’s writing more books on the topic.

xxi

Acknowledgments

Deepest thanks go to Teri, Craig, Doug, Shane, and other family and friends who supported and helped with this
project. Thanks to Cliff Sherrill for providing an excellent foundation in computer science. Miguel, Dr. Ayars,
and everyone at Adafruit, SparkFun, and Arduino—thanks for your contributions. Rick, Michelle, and the Apress
staff—thanks for the opportunity to work on this project.

—Dan Cervo

First and foremost, thank you with love to my wife, Kristen Abbey. She allowed this book to be the center of our lives
until it was done. Many thanks to coauthor Dan Cervo. A giant thank you to all those that helped make this possible,
especially Ryan Ostrager. I had so much support from my friends, Mark Sproul, Anjanette Young, Anthony Lioi, and
editors Michelle Lowman, Brigid Duffy, Christine Ricketts, and Laura Jo Hess. Thanks Rutgers University for creating
such a supportive environment. Thank you David Finegold and Rich Novak, and finally the open source and open
hardware communities, without which Arduino, and all of my projects, would not exist. Lastly, thanks to the chipKIT
team, which has been responsive and has worked sincerely to achieve the best open source support and vision for
multiplatform Arduino.

—Rick Anderson

	Pro Arduino
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Arduino 1.0.4 Core Changes
	Changes to the Arduino IDE
	Changes to Sketches
	API Updates
	pinMode
	Return Types
	uint_8

	Arduino API Core 1.0.4
	Arduino.h
	Updated Serial Object
	Updated Stream Class
	Constructor
	Member Functions

	Print
	New Printable Class
	Updated String Library
	Wire Library Updates
	HardwareSerial Updates

	Physical Board Updates and USB Compatibility
	Avrdude Update
	The New Arduino Leonardo Board
	Board Variants
	Variants Files
	Variant Types and Naming

	Uploader Options Renamed to Programmers
	New Bootloaders
	USB Firmware for 16u2

	Summary

	Chapter 2: Arduino Development and Social Coding
	Components of Social Coding and Project Management
	What Is a Project and How Is It Organized?
	Overview of Version Control
	Overview of Issue Tracking
	Documentation

	Project Management for Social Coding
	Version Control with Git and GitHub
	What Is Git ?
	Installing Git
	GitHub Tools

	Version Control, Basic Workflow
	Creating Your Own Project
	Editing Code and Checking for Changes
	Work process
	View changes
	Saving and committing changes

	Workflow Summary: Creating Your Own Project
	Workflow Summary: Forking Another Project
	Creating a Pull Request
	Creating a Pull Request
	How To Merge a Pull Request
	What is issue management ?
	Issue management with Github
	Connecting Version Control with Issue Management

	Documentation
	Github wiki
	Creating Pages
	Using Markdown
	Code Blocks
	Linking to files.
	Headings

	Lists
	Ordered lists
	Unordered lists

	Linking to Images
	Normal Text

	Contributing to Arduino Development
	Forking Your Own Copy of Arduino

	How to build the Arduino IDE from source
	Community Resources
	Summary

	Chapter 3: openFrameworks and Arduino
	Getting Started
	Arduino Code
	Verifying the Code
	Arduino Serial Functions

	openFrameworks Setup
	Connecting to the Arduino from openFrameworks
	Verifying the Code
	openFrameworks Serial Functions

	Coding Once Using Firmata and ofArduino
	Setting Up Firmata
	Controlling the Arduino with openFrameworks
	Verifying the Code
	Key Constants Used by ofArduino
	ofArduino Reference of Class Functions

	Expanding on the Idea
	Changing Code
	Verifying the Code

	More Ideas to Work With
	Summary

	Chapter 4: Android ADK
	Android Devices
	What to Check For
	Known Working Devices
	Modding
	Arduino IDE Setup
	Android Application Creation
	The Arduino Sketch
	The Android ADK Application
	AndroidManifest.xml
	res/xml/accessory_filter.xml
	res/layout/main.xml
	res/values/strings.xml
	src/CH4.example.proArduino/CH4ExamplesActivity.java
	Verifying the Code

	Completing the Framework
	Completing the Application
	Arduino
	Verifying the Code

	SPI and ADK
	Summary

	Chapter 5: XBees
	Buying XBees
	Simple Setup
	Transparent (AT Command) Mode
	Module Configuration
	Arduino Setup
	Verifying the Code

	API Mode
	Module Configuration
	API Packet Construction
	Sending Commands
	Sending Data

	Request Packets
	Reply Packets
	Arduino Data Echo
	Endpoint Firmware
	Summary

	Chapter 6: Simulating Sensors
	Analog Sensors
	Analog Sensor Reader
	RC Low-Pass Filter
	Verifying the Code
	Resistor Ladder
	Verifying the Code

	Digital Sensors
	PWM
	Gray Code
	Outputting Gray Code
	Verifying the Code

	Serial Sensors
	Outputting Serial Data
	Verifying the Code

	I2C
	The TWCR Register
	The TWAR Register
	The TWDR Register
	The TWSR Register
	Outputting I2C Data
	Verifying the Code

	Summary

	Chapter 7: PID Controllers
	The Mathematics
	The Proportional Statement
	The Integral Statement
	The Derivative Statement
	Adding It All Up
	Time

	PID Controller Setup
	Wiring the Hardware
	Verifying the Code

	PID Tuner
	Comparing PID, DEAD BAND, and ON/OFF Controllers
	PID Can Control
	Tuning
	PID Library
	PID Library Functions

	Other Resources
	Summary

	Chapter 8: Android Sensor Networks
	Setting Up a Sensor Network
	openFrameworks
	The Arduino
	The Android Application
	Summary

	Chapter 9: Using Arduino with PIC32 and ATtiny Atmel Chips
	Arduino and Nonstandard Environments
	The MPIDE and chipKIT PIC32
	Example: Object Detection using the Task Manager service

	Arduino Support for the ATtiny Family
	ATtiny 85/45/25
	ATtiny 84/44/24
	ATtiny 4313 and 2313

	Using the Arduino as an ISP Programmer
	Project: Secret Knock Box
	What the Device Does
	Bill of Materials

	Summary

	Chapter 10: Multiprocessing: Linking the Arduino for More Power
	I2C
	Serial Peripheral Interface
	Connecting Two Devices
	Setting Up a Master SPI Device
	Verifying the Code
	Interrupting Vectors
	SPI by the Registers
	Verifying the Code
	Multiple Slaves
	Master in Register
	Verifying the Code

	Symmetric Architecture Bipolar Bus
	SABB by the Code
	Verifying the Code
	Connecting SABB to SPI

	Conversion to Mega
	Physical Best Practices
	Summary

	Chapter 11: Game Development with Arduino
	Games Suitable for the Arduino
	A Simple Game
	Proof of Concept
	Coding Stop It
	Verifying the Code
	Dirty Little Tricks,

	Adding Better Displays and Graphics
	Gameduino Library
	A New Stop It
	Art
	Coding Stack It
	Verifying the Code
	Making Sounds
	Adding a Bit of Splash
	Programming the Game to Play Itself
	The Finishing Polish
	Arcade and Game Resources

	Summary

	Chapter 12: Writing Your Own Arduino Libraries
	What you need to know to write your own libraries
	Creating a simple library

	Making a Motor Library
	The anatomy of an Arduino library folder
	Examples Folder
	License
	keywords.txt
	Installing Arduino Libraries
	Using Arduino Libraries

	Arduino Objects and Library Conventions
	Summary

	Chapter 13: Arduino Test Suite
	Installing the Arduino Test Suite
	Getting Started with Testing
	Arduino Test Result Format
	Test Result Section Format Details
	Test-Naming Structure
	Test Status Options
	Test Summary

	Arduino Test Suite Basic Functions
	ATS_begin
	ATS_PrintTestStatus
	ATS_end
	Using the Basic Functions

	Arduino Test Suite Built-In Tests
	Strategies for Testing Your Own Arduino Derivative
	Memory Testing
	Example: Testing for a Memory Leak

	Testing Libraries
	SPI.transfer() Test
	setBitOrder() Test
	setClockDivider() Test
	setDataMode() Test
	SPI Test Results

	Summary

	Index

